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ABSTRACT

Porosity is a fundamental property of sand deposits found in a wide range of landscapes, from beaches to dune
fields. As a primary determinant of the density and permeability of sediments, it represents a central element in
geophysical studies involving basin modeling and coastal erosion as well as geoaccoustics and geochemical inves-
tigations aiming at the understanding of sediment transport and water diffusion properties of sandy landscapes.
These applications highlight the importance of obtaining reliable porosity estimations, which remains an elusive
task, notably through remote sensing. In this work, we aim to contribute to the strengthening of the knowledge
basis required for the development of new technologies for the remote monitoring of environmentally-triggered
changes in sandy landscapes. Accordingly, we employ an in silico investigation approach to assess the effects of
porosity variations on the reflectance of sandy landscapes in the visible and near-infrared spectral domains. More
specifically, we perform predictive computer simulations using SPLITS, a hyperspectral light transport model
for particulate materials that takes into account actual sand characterization data. To the best of our knowl-
edge, this work represents the first comprehensive investigation relating porosity to the reflectance responses of
sandy landscapes. Our findings indicate that the putative dependence of these responses on porosity may be
considerably less pronounced than its dependence on other properties such as grain size and shape. Hence, future
initiatives for the remote quantification of porosity will likely require reflectance sensors with a high degree of
sensitivity.

Keywords: sand, porosity, water saturation, sphericity, roundness, reflectance, predictive simulations, controlled
experiments.

1. INTRODUCTION

Soil samples are composed of particles (grains) of weathered rock and sometimes organic matter immersed in a
medium of air and water (the pore space).1 They are classified according to the size distribution of the mineral
particles.2 This is accomplished first by assigning individual particles to classes, called soil separates, according
to their size. Various agencies have differing definitions for soil separates and textural classes In this work, we
use the system developed by the United States Department of Agriculture (USDA).3 The USDA defines three
soil separates, called sand, silt, and clay. After soil particles are divided into these classes, from the largest to
the smallest particles, respectively,4 the relative masses of each soil separate are then compared to determine the
texture of a soil sample. A sand-textured soil, henceforth referred to as sand soil or sand deposit, contains at
least 85% sand-sized particles.3

The porosity of a soil sample corresponds to the volume of the pore space as a fraction of the total volume
of the sample.5 It varies with soil texture, however, with coarse soils being less porous than finer soils.5 For
sand-textured soils, porosity typically varies between 35% and 50%,2,6 albeit one can find values as low as 19.6%7

and as high as 66%8 in the literature.

Porosity is a primary determinant of the density and permeability of sediments. It represents a vital input
for basin modeling and studies involving coastal erosion.6 Moreover, the porosity of a sand deposit can be used
to calculate its wet bulk density.9 This quantity, in turn, is of interest for a variety of geoaccoustics10 and
biogeochemical9 investigations aiming at the understanding of sediment transport and water diffusion properties
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of sandy landscapes. This connection between porosity and water flow is also one of the focal points of hydrological
studies involving the permeability of aquifers.9

These applications underscore the importance of obtaining reliable porosity estimations. Accordingly, different
techniques have been proposed for obtaining in situ samples of sand deposits from which porosities can be
measured. These techniques, however, have been often undermined by grain breakage and core disturbance
problems.7,9, 10 More recently, non-destructive approaches, such as the nuclear densimeter method,6 are being
proposed to eliminate the physical handling of the sand samples, which can disturb their loosely packed grains,
and enable repetitive measurements at a single test location. When it comes to the remote estimation of this
property, however, there is still a long way to go in view of the relative scarcity of studies relating soil optical
properties to porosity,11,12 particularly with respect to sand deposits.13 In order to determine the feasibility of
initiatives aimed at the remote quantification of this property, we believe that it is necessary to examine these
relationships more closely. These aspects have motivated the research presented in this paper.

In this work, we investigate the effects of porosity on the hyperspectral signatures of sandy landscapes. Our
primary goal is to assess the putative dependence of these signatures on the porosity of these terrains, which can
affect the feasibility of initiatives aimed at the remote quantification of this soil property. In order to overcome the
difficulties inherent to in situ studies, we employ an in silico approach. More specifically, we perform predictive
computer simulations using a hyperspectral model for particulate materials, known as SPLITS (Spectral Light
Transport Model for Sand),13 which takes into account actual sand characterization data. Through this approach,
we can perform controlled experiments on sand samples, i.e., we can assign different values to specific parameters
and analyze their effects on the samples’ hyperspectral responses while keeping the other parameters constant. We
remark that such controlled experiments are difficult to perform effectively under actual laboratory conditions.
Our findings are expected to strengthen the knowledge basis to be used in the development of new high-precision
technology for the monitoring of environmentally-triggered changes in sandy landscapes associated with porosity
variations.

2. INVESTIGATION FRAMEWORK

Our investigation is focused on surficial, noncemented sand deposits. Besides variations on porosity (P ), it
takes into account variations on other sand properties, namely the degree of saturation, grain size and shape.13

The degree of saturation (S) corresponds to fraction of pore space occupied by water. The shape of a grain
is usually defined by two parameters: roundness (R) and sphericity (Ψ).14 While roundness can be described
as the measure of detail in the features on the grain surface, sphericity refers to the degree to which the grain
approaches a spherical shape.15

In our investigation, we also consider different iron-oxide distribution patterns within the samples. Iron oxides,
such as hematite, goethite and magnetite, may occur as pure particles,16 as contaminants mixed with the parent
material,17 or as coatings, within a kaolinite or illite matrix, formed on the grains during wind transport.18 In
terrestrial sand soils, the parent material is typically a material like quartz or calcite, with quartz (employed in
this investigation) being the most common.19

As the baseline references for our investigation, we employ directional-hemispherical reflectance curves (over
the 400 to 1000 nm region) computed for two selected sand samples with distinct morphological and mineralogical
characteristics using SPLITS. The actual reflectance curves measured for these samples20 were made available in
the U.S. Army Topographic Engineering Center (TEC) database.20 These samples are from a red (hematite-rich)
dune in Australia (TEC #10019201) and a magnetite-rich beach site in Peru (TEC #10039240). Based on their
descriptions,20 we assumed that the presence of clay-sized particles and moisture (water content) were negligible
in these samples.

For the computation of the modeled curves, besides considering S = 0, we employed mean values for the
porosity (P = 42.5%), grain roundness (R = 0.482) and grain sphericity (Ψ = 0.798) found in the literature.2,14

The remaining model parameter values employed to compute the modeled curves for these samples are given
in Table 1. Note that the percentages of the sand-sized and silt-sized particles depicted in Table 1 are used to
compute their dimensions during the simulations15 using a particle size distribution provided by Shirazi et al.4

The corresponding particle dimensions are provided in Table 2.
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Model Samples
Parameters Australian Dune Peruvian Beach
sa 85 92.8
si 15 7.2
µp 0 50
µm 90 0
µc 10 50
rhg 0.75 0.35
ϑhg 0.01 0.045
ϑm 0 0.17

Table 1: Parameters used to obtain the modeled spectral reflectance curves for the Australian and Peruvian TEC
samples.20 The texture of the samples is described by the percentages (%) of sand (sa) and silt (si) particles.
The particle type distributions considered in the simulations are given in terms of the percentages (%) of pure
(µp), mixed (µm) and coated (µc) grains. It is assumed that magnetite appears as pure particles in sand soils
characterized by the presence of this mineral.21 The parameter rhg corresponds to the ratio between the mass
fraction of hematite to the total mass fraction of hematite and goethite represented by ϑhg. The parameter ϑm
represents the mass fraction of magnetite.

Fractions Sand Silt
sa si da σa di σi

0.850 0.150 0.112 2.170 0.173 3.320
0.928 0.072 0.141 2.040 0.401 4.160

Table 2: Geometric mean particle diameters (given in mm) and standard deviations for soils with various mixtures
of sand-sized particles (sa) and silt-sized particles (si) considered in our simulations. The diameters and standard
deviations for sand-sized particles (da and σa, respectively) and silt-sized particles (di and σi, respectively) are
provided by Shirazi et al.4 Note that the presence of clay-sized particles is assumed to be negligible in the sand
samples considered in this work.

Within the SPLITS’ geometrical-optics formulation, light interacting with a given sand sample is represented
by rays that can be associated with any wavelength (λ). Hence, SPLITS can provide reflectance curves with dif-
ferent spectral resolutions. For consistency, all modeled curves depicted in this work have a spectral resolution of
5 nm. These curves were obtained using a virtual spectrophotometer.22 In their computation, we considered 106

sample rays and an angle of incidence of 0◦ for consistency with the actual measurements set-up employed by
Rinker et al.13,20

To enable the full reproduction of our in silico experimental results, we made SPLITS available online23

via a model distribution system.24 This system enables researchers to specify experimental conditions (e.g.,
angle of incidence and spectral range) and sand characterization parameters using a web interface,23 and receive
customized simulation results. In addition, the supporting data (e.g., refractive index and extinction coefficient
curves) used in our investigation were also made available online.25

As it can be observed in the graphs presented in Figure 1, the modeled curves show a close agreement with
their measured counterparts. Accordingly, we employed these modeled curves as the control (baseline) curves for
our in silico experiments involving variations in porosity, degree of saturation, roundness and sphericity. More
precisely, the datasets used to generate the baseline curves, with the exception of the values for the parameters
associated with these variations, were employed to generate the curves resulting from our experiments. In our
simulations, we considered typical lower and upper bounds for P (0.3 and 0.5),2,6 S (0 and 1), R (0.2 and 0.7)14

and Ψ (0.6 and 0.95).14 Note that R = 0.7 corresponds to the smoothest grains, while Ψ = 0.95 corresponds to
grains whose geometry is the closest to that of a sphere.

Proc. of SPIE Vol. 10428  104280S-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 10/5/2017 Terms of Use: https://spiedigitallibrary.spie.org/ss/TermsOfUse.aspx



400 500 600 700 800 900 1000
0

10

20

30

40

wavelength (nm)

re
fl
e
c
ta

n
c
e
 (

%
)

 

 

measured

modeled

400 500 600 700 800 900 1000
0

10

20

30

40

wavelength (nm)

re
fl
e
c
ta

n
c
e
 (

%
)

 

 

measured

modeled

Figure 1: Measured and modeled reflectance curves for the two sand samples employed as baseline references
in this investigation. Left: a hematite-rich (red) dune in Australia (TEC #10019201). Right: a magnetite-rich
(dark) beach site in Peru (TEC #10039240). The measured curves were obtained from the U.S. Army Topographic
Engineering Center (TEC) database.20 The modeled curves were obtained using the SPLITS model.13,23

Finally, in order to quantify the reflectance changes resulting from porosity variations, we compute the mean
relative difference between the respective curves for the two spectral regions of interest, namely
visible (400-700 nm) and near-infrared (700-1000 nm). This quantity is given in terms of percentage (%) and it
is expressed as:

MRD =
1

N

N∑
i=1

|ρP=0.3(λi)− ρP=0.5(λi)|
ρP=0.5(λi)

× 100, (1)

where ρP=0.3 and ρP=0.5 correspond to the reflectance curves obtained considering porosity set to 0.3 and 0.5,
respectively, and N is the total number of wavelengths sampled with a 5nm resolution within the selected spectral
region.

3. RESULTS AND DISCUSSION

In our first set of experiments, we simulated the combined effects of variations in porosity and degree of saturation
on the reflectances of the selected samples. Although the resulting plots depicted in Figure 2 show the expected
reflectance reduction associated with the increase in the degree of saturation,13 they show only minor changes
associated with the different porosity values. More specifically, in the case of the Australian dune sample (Figure 2
left), which was modeled considering smaller particle dimensions, one can only observe a minor reflectance
reduction from 400 to 950 nm when the porosity is increased from 0.3 to 0.5 and the degree of saturation is
set to 0. In addition, one can also observe a minor increase in the reflectance between 950 and 1000 nm under
the same conditions. When the degree of saturation is set to 1, the reflectance changes become slightly smaller
in the visible region and slightly larger in the near-infrared region. In the case of the Peruvian beach sample
(Figure 2 right), which was modeled considering larger particle dimensions, one can observe a minor reflectance
reduction along the entire region of interest from 400 to 1000 nm when the porosity is increased from 0.3 to 0.5
and the degree of saturation is set to 0. When it is set to 1, the reflectance changes become slightly larger. This
visual inspection of the curves presented in Figure 2 is supported by the corresponding MRD values provided in
Table 3.
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Figure 2: Comparison of modeled reflectance curves considering variations in porosity (P ) and degree of saturation
(S). Left: Australian dune sample. Right: Peruvian beach sample.
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Model Australian Dune Peruvian Beach
Parameter Visible Near-Infrared Visible Near-Infrared
S = 0 3.17 0.26 1.38 1.24
S = 1 2.00 0.34 2.32 2.07

Table 3: Mean relative difference (MRD) values computed for the curves depicted in Figure 2. These values are
given in terms of the percentages (%).

In our second set of experiments, we simulated the combined effects of variations in porosity and roundness
on the reflectances of the selected samples. Although the resulting plots depicted in Figure 3 show the expected
reflectance reduction associated with the increase in roundness,15 again they show only minor changes associated
with the different porosity values. More specifically, in the case of the Australian dune sample (Figure 3 left),
one can only observe a minor reflectance reduction, notably in the visible region, when the porosity is increased
from 0.3 to 0.5 and the roundness is set to 0.2. When it is set to 0.7, the reflectance changes become slightly
smaller in the visible region and slightly larger in the near-infrared region. In the case of the Peruvian beach
sample (Figure 2 right), again one can observe a minor reflectance reduction along the entire region of interest
from 400 to 1000 nm when the porosity is increased from 0.3 to 0.5 and the roundness is set to 0.2. When it
is set to 0.7, the reflectance changes become slightly larger. This visual inspection of the curves presented in
Figure 3 is supported by the corresponding MRD values provided in Table 4.
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Figure 3: Comparison of modeled reflectance curves considering variations in porosity (P ) and roundness (R).
Left: Australian dune sample. Right: Peruvian beach sample.

Model Australian Dune Peruvian Beach
Parameter Visible Near-Infrared Visible Near-Infrared
R = 0.2 3.14 0.27 1.38 2.13
R = 0.7 2.86 0.60 1.24 1.14

Table 4: Mean relative difference (MRD) values computed for the curves depicted in Figure 3. These values are
given in terms of the percentages (%).

In our third set of experiments, we simulated the combined effects of variations in porosity and sphericity on
the reflectances of the selected samples. Similarly to the previous sets of experiments, although the resulting plots
depicted in Figure 4 show the expected reflectance changes associated with the variations in sphericity,15 they
show only minor quantitative changes associated with the different porosity values. In this set of experiments,
however, we noticed some distinct qualitative trends. In the case of the Australian dune sample (Figure 4 left),
while one can observe a minor reflectance reduction in the region from 400 to ≈620 nm when the porosity is
increased from 0.3 to 0.5 and the sphericity is set to 0.6, one can observe a minor reflectance increase in the region
from ≈620 to 1000 nm. When the sphericity is set to 0.95, however, one can observe a reflectance reduction along
the entire region of interest. In the case of the Peruvian beach sample (Figure 4 right), one can observe a minor
reflectance reduction in the region from 400 to ≈490 nm and a minor reflectance increase from ≈490 to 1000 nm
when the porosity is increased from 0.3 to 0.5 and the sphericity is set to 0.6. When it is set to 0.95, however,
one can observe a minor reflectance reduction along the entire region of interest (from 400 to 1000 nm). This
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visual inspection of the curves presented in Figure 4 is supported by the corresponding MRD values provided in
Table 5.
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Figure 4: Comparison of modeled reflectance curves considering variations in porosity (P ) and sphericity (Ψ).
Left: Australian dune sample. Right: Peruvian beach sample.

Model Australian Dune Peruvian Beach
Parameter Visible Near-Infrared Visible Near-Infrared
Ψ = 0.6 2.12 1.15 1.26 1.86
Ψ = 0.95 1.39 1.79 1.84 0.54

Table 5: Mean relative difference (MRD) values computed for the curves depicted in Figure 4. These values are
given in terms of the percentages (%).

In all tested cases, a 60% variation in porosity resulted in minor reflectance changes, on average below
3.5%. We also note that similar variations in the other sand properties, notably grain size and sphericity,
result in significantly larger reflectance changes.13,15 Considering these aspects, the results of our in silico
experiments demonstrate that, for sand deposits with typical mineralogical and morphological characteristics, the
putative reflectance dependence on porosity12 is markedly weaker than its dependence on these other properties
in the spectral region of interest (from 400 to 1000 nm). Although our findings should be confirmed by actual
spectrophotometric experiments, they clearly indicate that new initiatives for the remote detection of porosity
variations on sand deposits will require sensors with a high degree of sensitivity. Moreover, since previous works6,9

have indicated that the permeability of sand deposits may be correlated with grain size and sphericity in addition
to porosity, future studies in this area, particularly those supported by remote sensing technologies, should take
into account the potential masking effects that reflectance changes due to these properties may have on reflectance
changes due to porosity.

4. CONCLUSION AND FUTURE WORK

Although there have been previous works11,12 relating soil optical properties to porosity, to the best of our knowl-
edge, the research presented in this paper represents the first comprehensive investigation relating porosity and
the hyperspectral signature of sand soils. Our in silico experiments, which were primarily focused on the assess-
ment of the putative dependence of the hyperspectral reflectance of these media to their porosity, demonstrate
that such a dependence may be considerably weaker than originally expected, notably for sand soils with typical
mineralogical and morphological characteristics, in the spectral region from 400 to 1000 nm. We believe that our
findings, albeit still subjected to further validation through actual spectrophotometric experiments, should be
taken into account in the design of new technologies for the remote monitoring of this fundamental soil property.

As future work, we plan to extend our research to the effects of porosity on the spatial distribution of the
reflected light. More specifically, we intend to investigate the effects of porosity variations on the bidirectional
surface scattering distribution function (BSSDF) of sand soils. We also plan to extend it to extra-terrestrial sand
soils characterized by distinct parent materials.
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