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ABSTRACT 

The convergence of iterative methods used to solve the linear systems of equations 
arising from discretizing radiative transfer problems depends on the characteristics 
of the eigenvalues of the coefficient matrix of these systems. In this communication 
we examine the proof that all of these eigenvalues are real and positive and discuss 
its implications for the solution of problems in radiative heat and mass transfer by 
iterative methods. This proof, outlined initially by Baranoski et al [ 1] in the context 
of the radiative transfer of luminous energy, allows the use of more efficient 
methods to solve radiative transfer systems. These methods, based on the knowledge 
about the set of eigenvalues of the radiative transfer coefficient matrix, may, in turn, 
provide faster SOhtiOnS for t&Se systems. @ 2001 Ersevter Science Ltd 

1 Introduction 

In order to determine the fraction of diffusively radiated energy, or radiosity [2], from a 

surface of a given enclosure we need to solve the radiative transfer integral equation which 

discretized results in a system of linear equations [3]. We denote the coefficient matrix of this 

system by G. The vector of unknowns of this system is represented by the vector of radiosities b 

and the right-hand side vector of this system is represented by the vector of emittances e. This 

radiative transfer system is represented as’ 

Gb=e (1) 

where the elements of G are given by: 

G,, = 6,, - P, E, (2) 
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where: 

J1, = Kronecker delta, 

p, = reflectance of a surface z , 

F, = form factor between a surface i and a surface j 

The form form factor F, , also called shape or view factor, indicates how a surface i 

~ ~ sees” a surface j In other words, it specifies the fraction of radiated energy that leaves a 

surface and i arrives at a surface j Form factors depend on the shape and relative orientation of 

the surfaces as well as on the presence of obstacles between them. Several numerical algorithms 

have been developed to compute form factors. Generally speaking these methods can be divided 

into two groups: deterministic, based on quadrature methods [4], and nondeterministic, based on 

Monte Carlo methods [5]. The computational costs involved in the computation of form factors 

correspond in many cases to 90% of the total time spent to solve the radiative transfer integral 

equation [6]. These costs usually can be reduced through the application of the reciprocal rule for 

form factors (31: 

where: 

A, = area ofsurface i, 

A, = area of surface j 

Direct direct methods for solving linear systems, such as Gaussian Elimination [7] or LU 

decomposition [7] are not suitable for large radiative transfer systems of equations because of the 

relative low density of the coeffklent matrix and because rapid solutions at relatively low 

accuracy are needed. These aspects plus the special properties of the radiative transfer coefficient 

matrix, namely its nonsingularity’ and diagonal dominance* make the use of iterative methods 

more convenient. 

Two questions come to mind when one investigates fast solutions for radiative transfer 

systems: 

’ An n x n matrix K is said to be nonsingular if an n x n matrix K -’ (the inverse of K ) exists 
such that m _’ = Km’K = I [7]. Alternatively a matrix K is also said to be nonsingular if its 
determinant is nonzero [9]. 

’ Assuming that 0 < p, c 1 and that the sum of form factors in any row is equal to one, we 
can say that the matrix G is strictly diagonally dominant, since the property 
1 G,, I> c:;: 1 G,] 1 holds for each ,j = 1,. ., n 
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l Why is it relevant to search for faster iterative methods to solve the radiative transfer system 

of equations when the most expensive stage of the radiative transfer pipeline is the 

calculation of form factors? 

l What if a radiative transfer system is too large to be stored in main memory of a computer 

system? 

The answer for the first question involves applications in which a radiative transfer 

system has to be solved repeatedly, due to changes either to the vector of reflectances or to the 

vector of emittances, while the form factors remain unchanged. An example of such an 

application would be the simulation of the incidence of sunlight over a building during a day [8]. 

In this case the form factors would have to be computed only once, while the system would have 

to be solved 720 times to account for solar positions at every minute. 

In order to address the second question one may resort to hierarchical approaches, which 

attempt to reduce the number of form factors that have to be computed and stored [lo] Applymg 

these approaches the coefficient matrix becomes characterized by the presence of blocks along its 

diagonal. These diagonal blocks are radiative transfer subsystems with a manageable size that can 

be stored in main memory and even solved in parallel. 

We believe that the aspects presented above justify the search for fast solutions for 

radiative transfer systems. In this communication we address issues directly related to this search. 

Section 2 outlines the relationship between the eigenvalues of the coefficient matrix of a radiative 

transfer system and the convergence of the iterative methods used to solve such a system. 

Section 3 examines the specific characteristics of these eigenvalues. The communication closes 

with considerations regarding the implications of the spectral characteristics of the radiative 

transfer coefficient matrix. 

2 Relationshir, of Eieenvalues to Iterative Methods 

An eigenvector v of a matrix G is a nonzero vector that does not rotate when G is applied 

to it, i e. there is some scalar constant il , an eigenvulue of G , such that Gv = /zv Every square 

matrix G of order n has n possibly nondistinct complex eigenvalues a,, A,, ., An When G is 

symmetric the eigenvalues are real-valued. The set a(G) of eigenvalues of a matrix is called its 

spectrum. 
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Eigenvalues determine the convergence of iterative solvers used to solve linear systems 

such as Gb = e For linear stationary methods of the form b(‘+‘) = 7%“) + Z, which includes 

Jacobi, Gauss-Seidel, and SOR, the eigenvalues of the iteration matrix 7’ are the relevant ones. 

The matrix T is derived from the coefficient matrix G ; for example in the Gauss-Seidel iteration 

T = (D + L))’ U where D , L , and U are the diagonal ( D ), strictly lower triangular, (L ) and 

strictly upper (U ) triangular parts of G However, there might be no connection between the 

eigenvalues of T and those of G Linear stationary methods converge if and only if c(T) < 1, 

where c(T) is the size of the eigenvalue with largest magnitude. Furthermore, convergence is 

faster for smaller c(T) 

For nonstationary methods such as Conjugate Gradient (CG) [ 1 l] or Chebyshev [ 121, the 

eigenvalues of the coefficient matrix G are the important ones. The Chebyshev method has 

convergence determined by the convex hull of the spectrum of G , which is determined by the 

extreme eigenvalues. For a matrix with positive real eigenvalues the largest (A,,,, ) and smallest 

(A,,,, ) eigenvalues completely determine convergence, which is faster for larger values of 

(&W + &X” ) ‘&ax - /2,,, ) The convergence of the Conjugate Gradient method is determined 

by the overall distribution of eigenvalues, and even for a given o(G) it is impossible to predict 

the exact number of iterations CG will require to attain a given accuracy in the solution. 

However, CG generally requires only s + 1 iterations for a given accuracy when the eigenvalues 

occur in only s < n clusters, and the method has faster convergence for larger values of 

(&ax + A,,” ) @,, - &n,” ) 

In theory one could apply any iterative method to solve a radiative transfer system of 

linear of equations. However, if the eigenvalues of the coefftcient matrix of this system are real 

and positive (Section 3) we can apply fast methods, like Chebyshev and Conjugate Gradient 

among others, with confidence of their convergence. In the next section we present the proof that 

these eigenvalues of the radiative transfer coefficient matrix are indeed real and positive. 

3 Eieenvalues of the Radiative Transfer Coefficient Matrix 

The transpose of an n x n matrix G = (g,, ) is the matrix GH = (g, ) A square matrix 
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G is said to be symmetric if G = GH Initially, to prove that all eigenvalues of the radiative 

transfer coefficient matrix G are real and positive, consider that it can be made symmetric by 

scaling its rows: 

GS=DG (4) 

where D is the diagonal matrix in which the diagonal entry d,, is the quotient of the area and the 

reflectance of surface i Recall the reciprocity relationship of form factors (Equation (3)). 

Since DG is symmetric, its eigenvalues are real-valued. Moreover, by applying the 

Gerschgorin Circle Theorem [6], one can verify that they are also positive. Hence DG is a 

positive definite matrix [6]. The definition of positive definite means that: 

x”DGx> 0 (5) 

for all x E C , where C is the complex plane and X” is the Hermitian transpose of the vector x 

Let x be an eigenvector of G and R. be an eigenvalue. Then 

Gx=Ax (6) 

where ;1 and x # 0 are possibly complex, which can be rewritten as: 

DGx = wlx (7) 

and 

xHDGx = k”Dx (8) 

The left side of Equation (8) is necessarily real and positive from Equation (5). 

Furthermore, the definition of an eigenvector x implies that it is nonzero, hence 

x”Dx = ~Ftx,d,, 2 dmlnxx,JZ, = d,,,x”x = drmn/xll > 0 (9) 

where d_ = min I dl, 

Equations (8) and (9) imply that 1 is real and il > 0. Therefore all of the eigenvalues 

of G are real and positive. 

4 Conchdine Remarks 

Although it may seem that this proof applies directly to the continuous radiative transfer 

operator, more details need to be considered. The critical point is that the diagonal entry i of the 

matrix D is the ratio of the area and reflectance of the i-th surface. For the continuous case, the 

area is zero and the above argument cannot be used directly. However, the continuous operator is 

a compact operator, sometimes also called a completely continuous operator in functional 



524 G.V.G. Baranoski, R. Bramley and J.G. Rokne Vol. 28, No. 4 

analysis [ 13 1. Because of this we can construct a sequence of finite dimensional operators G, 

that converge uniformly to the continuous operator G, , each with a spectrum consisting only of 

positive real eigenvalues. That sequence can be constructed using a sequence of uniformly 

refined discretizations of the enclosure, for example. The limit G, will necessarily have a 

spectrum that is real and nonnegative. Because G, is nonsingular, it cannot have zero as an 

eigenvalue. Its compactness also implies that it has only a point spectrum, which implies that G, 

has only positive real eigenvalues in its spectrum 

Finally, we would like to stress the significance of this proof for the solution of problems 

involving the transport of radiant energy. As examined in Section 2, the fact that all elgenvalues 

of G are real and positive allows the application of fast iterative solvers, such as Chebyshev and 

Conjugate Gradient, to radiative transfer systems with confidence of their convergence. 
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