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Abstract

The computation of the fraction of radiation power that leaves a surface and arrives at another, which is
speci"ed by the form factor linking both surfaces, is central to radiative transfer simulations. Although there
are several approaches that can be used to compute form factors, the application of nondeterministic
methods is becoming increasingly important due to the simplicity of their procedures and their wide range of
applications. These methods compute form factors implicitly through the application of standard Monte
Carlo techniques and ray-casting algorithms. Their accuracy and computational costs are, however, highly
dependent on the ray density used in the computations. In this paper a mathematical bound, based on
probability theory, is proposed to determine the number of rays needed to obtain asymptotically convergent
estimates for form factors in a computationally e$cient stochastic process. Speci"cally, the exponential
Chebyshev inequality is introduced to the radiative transfer "eld in order to determine the ray density
required to compute form factors with a high reliability/cost ratio. Numerical experiments are provided
which illustrate the validity and usefulness of the proposed bound. � 2001 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

A form factor, also called con"guration or view factor [1], indicates how a surface `seesa another
surface. In other words, it speci"es the fraction of radiant power that leaves a surface and arrives at
another. Form factors depend on the shape and relative orientation of the surfaces as well as on the
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presence of obstacles between them. Although there is no closed-form solution for the form factors,
there are useful analytical formulae for simple geometrical con"gurations [1}11]. However, these
formulae are usually not general enough to be used in radiative transfer applications involving
complex geometrical con"gurations. Moreover, the existing analytical formulae are oftentimes
complex, which makes them prone to roundo! and truncation errors. For these reasons, several
numerical methods have been developed to compute form factors. Generally speaking, these
methods can be divided into two groups: deterministic and nondeterministic.
The deterministic methods for the computation of form factor between surfaces are usually based

on the application of mathematical tools such as contour integration [9] or Gaussian quadrature
[12]. In order to apply these tools it is required that both surfaces have certain properties such that
a regular grid or subdivision can be found on them or along their boundaries. Although it is
possible to relax the above requirement, the algorithms will then be correspondingly complex. The
nondeterministic methods, based on the use of Monte Carlo techniques [13] and ray-casting
algorithms [14,15], do not require a regular grid on the surface. This aspect allows the application
of these methods to wide variety of geometric con"gurations. Their application requires only the
selection of the origin and the direction of sample rays according to an appropriate probability
criteria. These methods consist basically of the determination of the numerical value of an estimand
[13], or expected value, to which the fraction of the radiation transferred between an di!erential
element and a surface, or between two surfaces, converges. This estimand will correspond to the
form factor between the two elements. For a comprehensive literature review of the application of
Monte Carlo based methods in the solution of radiative transfer problems, such as the computa-
tion of form factors, the reader is referred to Ref. [16].
In applications involving Monte Carlo techniques variance is used as a measure of dispersion

around the estimand [13]. Variance is de"ned as the square of the standard deviation, which, in
turn, indicates the absolute deviation from the estimand. Due to their stochastic nature the
nondeterministic methods may sometimes provide estimates with low variance with respect to the
estimand in the early stages of the simulation, i.e. after using a small number of sample rays. Since
the value of the estimand is unknown before the simulation, these earlier estimates are not reliable,
and estimates within the region of asymptotic convergence of the estimand are, therefore, desired.
In fact, if one knew a priori the value of the estimand for a given geometric con"guration, there
would be no point in carrying out the numerical computation of the form factor. To ensure that the
estimates regarding a given geometrical con"guration are within the asymptotic convergence
region, a brute-force approach, which consists of using a very large number of sample rays, can be
applied. However, the application of this strategy results in a high computational overhead in
terms of processing time.
In this paper we present a bound for the least number of sample rays required to obtain estimates

that lie within the region of asymptotic convergence of the estimand with high probability, and,
consequently, substantially reduce the processing time. For the reason mentioned earlier, the
determination of an appropriate ray density, or sample size [13], shall not depend on the
knowledge about the value of the estimand or on its variance. In order to ful"ll this guideline we
present a mathematical criterion derived from a probability concept, namely the exponential
Chebyshev inequality [17,18], and adapt it to the requirements of radiative transfer simulations.
Practical experiments involving di!erent geometrical con"gurations are shown to illustrate
its suitability to the nondeterministic computation of form factors. Moreover, theoretical and
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�Lambertian or ideal di!use surfaces appear equally bright from all viewing angles because they have a constant
spectral radiance at all viewing angles under steady lighting conditions [16].

numerical comparisons with ray densities provided by the ordinary Chebyshev inequality [18}20]
are also provided with the same purpose.
After we completed the research presented in this paper, we learned that the connection between

form factor computation and probability inequalities, such as the ordinary Chebyshev inequality,
was noted by Pellegrini [21]. However, his use of these inequalities is di!erent from the one
performed in this paper. In his paper, Pellegrini presents a Monte Carlo algorithm to compute
approximations of form factors using the theory of integral geometry [22]. He uses the inequalities
to provide an upper bound on the running time of his algorithm and an upper bound on the
absolute approximation error of each form factor computed through it. Besides the di!erences in
the application of the inequalities, Pelligrini does not include practical experiments in his research.
In this context, although our research was developed independently of the research done by
Pellegrini, some of its aspects might also be viewed as a more thorough examination of some of the
ideas presented in his paper. As mentioned above, we also refer to the ordinary Chebyshev
inequality in comparisons involving the exponential Chebyshev inequality. Our investigation,
however, is not limited to theoretical aspects, but involves also the examination of practical issues
related to the application of these inequalities to form factor computation.
The remainder of this paper is organized as follows. Section 2 provides an overview of the

formulation of nondeterministic methods for form factor computation. Section 3 introduces the
exponential Chebyshev inequality, and discusses its application to form factor computation.
Section 4 describes the performance criterion and the geometrical con"gurations used in the
numerical experiments performed to evaluate the applicability of the proposed bound. Section
5 discusses the results of these experiments. Finally, the paper closes with a summary of the main
conclusions and with directions for future research.

2. Statement of nondeterministic methods for form factor computation

For the following presentation we consider only "nite Lambertian� elements (di!erential ones or
surfaces). Moreover, light propagation is described in terms of ray or geometrical optics, where
light is assumed to be composed of non-interacting straight rays, each of them carrying a certain
amount of energy [23].

2.1. General concepts

The form factor linking two elements i and j represents the inverse ratio between the radiant
power leaving the emitter element i, denoted by �

�
, and the radiant power arriving at the receiver

element j, denoted by �
��
, and it is given by

F
��

"

�
��

�
�

. (1)
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As mentioned earlier, nondeterministic methods implicitly estimate F
��
by using Monte Carlo

techniques [13]. Since we are considering only di!use elements, we know that the element
i re#ects/emits radiant power in a cosine distribution, which in turn allow us to divide �

�
into

N packets or rays. Each ray is sent in a random direction. As pointed out by Shirley [24], these
directions should have a cosine density, rather than being uniformly random. If a ray hits the
element j, i.e. the element j is seen by the element i in the direction that the ray is sent, the radiant
power carried by the ray is fully transferred to it.
Considering a total number of N rays, and assuming that each ray carries the same amount of

radiant power and the total radiant power to be shot is �
�
, then, as stated by Shirley [16,25], the

radiant power carried by each ray is given by

�
���

(�)"
�

�
N

. (2)

Therefore, if m rays hit the element j, the form factor linking i and j can be represented by

F
��

"

m�
���

N�
���

(3)

or simply

F
��

"

m
N
. (4)

Although the concepts presented above represent the kernel of nondeterministic methods for
form factor computation, one can "nd di!erent algorithms in the literature [26] according to the
strategies applied to select the origin and the direction of the sample rays. In Section 2.2 we discuss
this issue, and outline strategies commonly used to generate sample rays.

2.2. Sampling strategies

2.2.1. Emitter sampling
For geometric con"gurations in which the emitter element is represented by a di!erential

element, all sample rays have the same origin. When the emitter is represented by a "nite surface,
however, sample points are randomly chosen to represent the origin of the rays. In order to apply
Monte Carlo techniques these points must be generated according to a probability density function
( pdf ) [13]. Before proceeding with this discussion, we shall brie#y review some relevant de"nitions.
If a random variable � ranges over some region �, then the probability that � will take a value in

some subregion �
�
L� is given by

�(�3�
�
)"��� � ��

pdf (��) d�(��) ( pdf :�PR�), (5)

where �(event), also called cumulative distribution function [13], is the probability that the event is
true [16]. In ray casting applications � is typically an area (d�"dA"dx dy) or a set of directions
(d�"d�"sin � d�d	).

450 G.V.G. Baranoski et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 69 (2001) 447}467



Consider a one-dimensional pdf represented by a function f (z) and de"ned over the interval
z3[a, b]. We can generate random numbers 


�
that have a density f from a set of uniformly

distributed random numbers �
�
, where �

�
3[0,1], using a warping function= such that



�
"=(�

�
), (6)

where = is given by the inverse of the corresponding cumulative distribution function, i.e.
="���. For the one-dimensional pdf de"ned above, the corresponding cumulative distribution
function is given by

�(z)"�
�

�

f (z�) d�(z�). (7)

For a two-dimensional pdf, we need a two-dimensional cumulative distribution function �(x, y). In
this case, if �(x, y) is separable, then the one-dimensional techniques can be used on each dimension
to determine the warping function. We examine this possibility in more detail in Section 2.2.1.
In the experiments presented in Section 5 regarding the form factor between two squares (Section

4.2.6), the emitter element is represented by two triangles, ¹
�
and ¹

�
. For each ray we generate

a uniformly distributed random number � in the interval [0,1]. If �50.5, then we choose a random
point on ¹

�
as the origin. Otherwise, we choose a point on ¹

�
.

In order to choose a random point q on a triangle de"ned by the vertices q
�
, q

�
and q

�
, the

following pdf [27] can be used:

pdf (q)"
1
A
, (8)

where A corresponds to the area of the triangle.
In this case, a random point q on the triangle is given by

q"q
�
#s(q

�
!q

�
)#t(q

�
!q

�
), (9)

where s and t are obtained using the following warping function [27]:

(s, t)"(1!�1!�
�
,(1!s)�

�
), (10)

with �
�
and �

�
being uniformly distributed random numbers in the interval [0,1].

2.2.2. Directional sampling
To simulate the distribution of the rays sent by a di!use emitter element, we also use warping

functions. In this case, the pdf corresponds to a cosine distribution [16,28], and it is given by

pdf (�, 	)"
1
�
cos �, (11)

where � corresponds to the polar angle with respect to the normal of the element, and 	 corres-
ponds to the azimuthal angle around the normal of the element. These angles correspond to
angular displacements used to perturb the emitted rays.
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The cumulative density function for the pdf expressed by Eq. (11) is given by

�(�,	)"�
�

�
�

�

�

cos ��
�

sin ��d��d	�. (12)

Since the pdf expressed by Eq. (11) is separable, as mentioned earlier, one-dimensional derivation
techniques can be applied on each dimension to "nd the warping function used to generated the
corresponding angular displacements. Solving Eq. (12) in the dimension associated with � results in

�
�

�

2 cos �� sin ��d��"2�!
cos� ��

2 �
�

�

"2�!
cos� �
2

#

1
2�"!cos� �#1, (13)

which means that

!cos� �#1"�
�
, (14)

or

�"arccos(�1!�
�
), (15)

where �
�
is an uniformly distributed random number in the interval [0,1].

Solving for the dimension associated with 	 gives

�
�

�

1
2�

d	�"
	
2�

, (16)

which means that

	
2�

"�
�

(17)

or

	"2��
�
, (18)

where �
�
is an uniformly distributed random number in the interval [0,1].

Therefore, the corresponding warping function used to generate the angular displacements
represented by the angles � and 	 is given by

(�,	)"(arccos(�1!�
�
), 2��

�
). (19)

3. Ray density bound

As mentioned earlier, we denote the total number of sample rays, or the ray density, by N.
However, for the sake of compactness, we may also represented it by logN (base 10). The main
question to be addressed when applying a nondeterministic method to compute form factors is how
many rays should be cast by the emitter element; that is, how large should N be.
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Clearly, using a su$ciently large number of sample rays, one will have a high probability to
obtain estimates within the region of convergence of the expected value of the form factor being
computed. However, as shown by numerical experiments presented in Section 5, the processing
time grows rapidly according to the total number of sample rays N.
The purpose of the following discussion is to determine a satisfactory bound for N such that we

can obtain estimates of the form factor between di!use elements with a high reliability/cost ratio
(Section 4.1). In other words, we want to obtain estimates within the region of asymptotic
convergence and reduce the computational time. Before getting to the speci"cs of the criterion
proposed in this paper for selecting a satisfactory bound for N, we review some relevant de"nitions
and concepts.

3.1. Bernoulli theorem and Chebyshev inequality

A random variable 
 that takes two values 1 and 0 with probabilities p (`successa) and
q (`failurea), where p#q"1, is called a Bernoulli random variable [17]. A probabilistic model of
k independent sampling experiments with two possible outcomes occurring with probabilities
p and q is called a Bernoulli trial [17,29,30].
Suppose that 


�
, 


�
,2, 


�
are independent Bernoulli variables. The expectation of a Bernoulli

variable 

�
is given by

E(

�
)"p (20)

As stated by Shiryaev [17], if we de"ne the sum of k Bernoulli random variables as

S
�
"

�
�
���



�
, (21)

it follows that:

E(S
�
)"kp (22)

As stated by Chiang [19], for su$ciently large k, the relative frequency S
�
/k becomes and

remains close to p with a probability of one. Jacob Bernoulli in his posthumous book Ars
Conjectandi (1713) published a theorem, whose proof can be found in the book by Uspensky [30],
that formally describes this fact. The Bernoulli theorem states that, for every strip of width �'0
and con"dence 
'0, there is a number G such that, for k"G#1,G#2,2,

P��
S
�

k
!p�5��'1!
, (23)

where P�w� means the probability of w.
The particle transport simulation using Monte Carlo techniques can be seen as a Bernoulli trial

[31,32]. In this context a general result of probability theory, known as the Chebyshev inequality
[18}20], can be used to determine the number of samples needed to obtain estimates with a certain
con"dence in a strip of width �. This inequality states that

P�
5��4

E(
)
�

∀�'0. (24)
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From the Chebyshev inequality it can be shown [17] that

P��
S
�

k
!p�5��4

pq
k��

4

1
4k��

. (25)

Recall from probability theory that

P��w�(��"1!P��w�5��. (26)

Hence, we can rewrite the inequality given by Eq. (25) as

P��
S
�

k
!p�(��51!

1
4k��

. (27)

The con"dence in an estimation is a given parameter (usually small). It measures the probability
of achieving a tolerable error. Theoretically, 
 is a positive number such that


51!P��
S
�

k
!p�(��. (28)

Then, to satisfy the above inequality, it is required that


5

1
4k��

. (29)

Therefore, from the Chebyshev inequality, the least number of sampling experiments required to
obtain estimates with a con"dence 
 is given by

k
�
"

1
4��


. (30)

3.2. Applying the exponential Chebyshev inequality to the computation of form factors

The `exponential forma of the Chebyshev inequality, known as the exponential Chebyshev
inequality [17], can used to obtain a more precise bound for the smallest number of sampling
experiments required. Assuming w50 and �'0, the exponential Chebyshev inequality states that

P�w5��"P�e��5e���4E�e�����	�, (31)

from the exponential Chebyshev inequality it can be shown [17] that

P��
S
�

k
!p�5��42e����� (32)

using Eq. (26) it follows that:

P��
S
�

k
!p�(��51!2e����� (33)
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Table 1
Comparison of bounds on the number of sampling experiments required to obtain
estimates with a con"dence given by 
 and using �"0.005


 Ordinary Chebyshev logN Exponential Chebyshev logN

0.001 7.0 5.18
0.005 6.3 5.07
0.01 6.0 5.02
0.05 5.3 4.86
0.1 5.0 4.77

from a reasoning similar to the one used to obtain the inequality given by Eq. (29), it follows that:


52e�����. (34)

Hence, from the exponential Chebyshev inequality, the least number of sampling experiments
need to obtain estimates with a con"dence 
 is given by

k
�
"

ln(2/
)
2��

. (35)

As shown by Shiryaev [17], using the theory of limits [17], it is possible to compare the bound
k
�
provided by the ordinary Chebyshev inequality with the bound k

�
provided by the exponential

Chebyshev inequality

lim
���

k
�
(
)

k
�
(
)

"lim
���

1
2
 ln(2/
)

"R. (36)

It is clear from the previous expression that, when 
P0, k
�
is tighter than k

�
for radiative

transfer applications involving high accuracy requirements, i.e. low values 
. Moreover, the "gures
presented in Table 1 show that, even for applications involving relatively low accuracy require-
ments, i.e. relative large values for 
, the bound derived from the exponential Chebyshev inequality
results in a number of sampling experiments considerably smaller than the number given by the
bound derived from the ordinary Chebyshev inequality. In Section 5 we present numerical
experiments that illustrate the applicability of the bound derived from the exponential Chebyshev
inequality in the computation of form factors through nondeterministic methods, and highlight the
signi"cant time savings that can be obtained from its application. Before going further in this
discussion however, we shall describe how the probability concepts presented so far "t into the
computation of di!use form factors through nondeterministic methods.
Recall that each ray sent by the emitter element either hits the receiver element, which will receive

all of its power, or not. Therefore, we can think of the computation of form factors as a Bernoulli
trial, and the sample rays as Bernoulli random variables, since all rays are generated independently
and according to the same distribution. Viewed in this context, the form factor F

��
linking an

emitter element i and a receiver element j, or the probability that a sample ray sent by the emitter
hits the receiver, corresponds to p. Also, the total number of sample rays N corresponds to k, and
the number of rays m that hit the receiver element corresponds to S

�
. Therefore, Eqs. (27) and (33),
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and the respective bounds derived from them, can be rewritten and applied to the computation of
form factors. In this case Eq. (33) can be rewritten as

P��
m
N

!F
�� �(��51!2e�����, (37)

and the bound on the number of sample rays derived from the exponential Chebyshev inequality is
given by

N"

ln(2/
)
2��

. (38)

3.3. Selection of parameters

The application of the proposed bound for ray density, as shown by Eq. (38), requires the
selection of only two parameters, namely the con"dence 
 with respect to the estimand and a strip
of width �, henceforth referred as uncertainty. The choice of con"dence is highly dependent on the
application. For example, as mentioned by Nievergelt [33], illuminating engineers need radiative
transfer solutions accurate to only 1 to 10%, since humans do not perceive "ner variations of light.
In order to evaluate the applicability of the proposed bound (Section 5), we selected a value for the
con"dence in the low end of this range, i.e. 
"0.01. The selection of a con"dence few orders of
magnitude higher or lower would not a!ect our observations considerably, since, as shown by the
"gures presented in Table 1, the proposed bound based on the exponential Chebyshev inequality is
not as sensitive to changes in the con"dence as the bound derived from the ordinary Chebyshev
inequality.
The selection of a value for the uncertainty � depends on how deep in the region of convergence

one wants the estimates to be. By using very small values for �, we can obtain estimates within the
region of constant convergence. In this case, however, the time measurements presented in Section 4
show that the corresponding reliability/cost ratios will be signi"catively lower due to a signi"cative
increase in the computational times. Therefore, we need to select a value for � that provides an
acceptable trade-o! between reliability and processing time.
Consider the following geometrical ratio given by

K"A/d, (39)

where A corresponds to the area of the receiver element, and d corresponds to the distance between
the emitter and the receiver. Clearly, if the value of K is smaller, the value of the form factor linking
the elements will be smaller as well, since, as pointed out by Howell [34], a small fraction of the
total number of rays would strike the receiver. This aspect indicates that an optimal choice for
� should take into account the magnitude of the estimand. For example, consider �"0.01 and
assume that the value of the estimand is 0.2. In this case, as indicated in Eq. (23), the choice of
�"0.01 would be appropriate to obtain estimates with a magnitude of approximately 0.2$0.01
with a probability of 1!
. However, by reducing the area of the receiver, we have a reduction in
the value of the estimand. In this case, assuming that the value of the estimand is 0.02 and using
�"0.01, we can expect estimates with a magnitude of approximately 0.02$0.01 with a probability
of 1!
, i.e. estimates with a deviation that may reach 50% of the value of the estimand.
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Obviously, we cannot propose a strategy for selecting � based on the estimand, since, as
mentioned earlier, we do not know a priori its value. Nevertheless, we know that the form factors
take values in the interval [0.1], whose mean corresponds to 0.5. Moreover, a standard deviation of
approximately 1%, or 0.01, is considered satisfactory for radiative transfer applications [34]. Using
these "gures, we may select a value for the uncertainty given by �40.5�0.01"0.005. The
experiments presented in Section 5 revealed that by setting �"0.005 we can obtain meaningful
estimates with reasonably high reliability/cost ratio. Our experiments also suggest that � should be
less than K, otherwise, for the reason described above, we cannot ensure a low deviation of the
estimates with respect to the estimand. Hence, for geometries in which �'K, we propose the
reduction of � by one order of magnitude. The use of this heuristic procedure to select � allows us to
obtain reliable and meaningful estimates even for geometries in which K presents a very small
value, as borne out by the experiments presented in Section 5.

4. Experimental issues

4.1. Performance criterion

Farmer and Howel [35] de"ne the `performancea of a Monte-Carlo-based method as

performance"��t, (40)

where �� corresponds to the variance of the solution, and t corresponds to the processing time. As
stated by Howel [34], the method or strategy in aMonte Carlo simulation that minimizes the value
of the quantity given by equation Eq. (40) is assumed to be the best choice.
Since, in this paper, instead of di!erent Monte Carlo based methods, we are comparing di!erent

choices for ray density, which are intentionally not based on the knowledge about the variance, we
found more appropriate to use a slightly di!erent `performancea criterion in our comparisons.
Recall that our main goal is to obtain estimates with a high reliability/cost ratio, which we de"ne as

reliability/cost"
(1!
)(1!�)

t
. (41)

For the sake of fairness, we consider the same value for the con"dence 
 and for the uncertainty
� in our comparisons involving di!erent ray density bounds. Therefore, the bound that provides the
smallest number of rays and, consequently, the shortest processing time, is considered to be the best
choice, since it minimizes the quantity given by Eq. (41).

4.2. Geometrical conxgurations and analytical formulae

In order to demonstrate the applicability of the proposed bound, we have computed the form
factors for a number of geometrical con"gurations using a nondeterministic method as outlined in
Section 2. Without loss of generality, we selected geometries for which analytical formulae for the
corresponding form factors are known. This aspect allowed us to compare the numerical estimates
with the analytical values and ensure the correctness of the algorithms used in our experiments.
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Fig. 1. Di!erential element to right triangle.

Notice that the estimand for a given geometrical con"guration does not need to be identical to the
corresponding analytical form factor. After all, this estimand is associated with an stochastic
numerical process. For the sake of completeness, however, we included in the next section
comparisons between numerical estimates and analytical values for the geometrical con"gurations
used in our experiments. These comparisons illustrate the accuracy of the nondeterministic
computation of form factors, and were performed through the computation of the relative
deviation of the numerical estimates, with respect to the corresponding analytical values, using the
following expression:

r.d.(%)"
�analytical value!numerical estimate�

�analytical value�
�100, (42)

with the "gures for analytical and numerical form factors truncated after the seventh digit.

4.2.1. Diwerential element to right triangle
The "rst geometrical con"guration used in our experiments corresponds to a form factor linking

a di!erential element dA
�
to a right triangle A

�
in a plane parallel to the plane of dA

�
, with the

normal of dA
�
passing through a vertex of A

�
. (Fig. 1). The analytical form factor for this

con"guration is given by the following expression found in Ref. [4]:

F
��

"

X
2�(1#X�)�
�

tan���
X tan �

(1#X�)�
��, (43)

where X is given by

X"

a
b
. (44)

4.2.2. Diwerential element to parallel polygon
The second geometrical con"guration used in our experiments corresponds to a form factor

linking a di!erential element dA
�
to a parallel polygon A

�
, with the normal of dA

�
passing through

a corner of A
�
(Fig. 2a). The analytical form factor for this con"guration is given by the following
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Fig. 2. (a) Di!erential element to parallel polygon. (b) Di!erential element to perpendicular polygon.

expression found in Ref. [31]:

F
��

"

1
2��

a
(a�#c�)�
�

sin���
b

(a�#b�#c�)�
��
#

b
(b�#c�)�
�

sin���
a

(a�#b�#c�)�
���. (45)

4.2.3. Diwerential element to perpendicular polygon
The third geometrical con"guration used in our experiments corresponds to a form factor

linking a di!erential element dA
�
to a polygon A

�
in a plane perpendicular to the plane of dA

�
, with

dA
�
lying in a plane through one edge of A

�
and with its normal passing through a corner of the

polygon (Fig. 2b). The analytical form factor for this con"guration is given by another expression
found in Ref. [31]:

F
��

"

1
2��sin���

a
(a�#c�)�
��!

c
(b�#c�)�
�

sin���
a

(a�#b�#c�)�
���. (46)

4.2.4. Diwerential element to coaxial sphere
The fourth geometrical con"guration used in our experiments corresponds to a form factor

linking a di!erential element dA
�
to a sphere A

�
, with the normal of dA

�
passing through the center

of A
�
(Fig. 3a). The analytical form factor for this con"guration is given by the following expression

found in Refs. [12,3]:

F
��

"�
r
h�

�
. (47)

4.2.5. Diwerential element to perpendicular sphere
The "fth geometrical con"guration used in our experiments corresponds to a form factor linking

a di!erential element dA
�
to a sphere A

�
, with dA

�
lying in a plane perpendicular to A

�
axis (Fig.

3b). The analytical form factor for this con"guration is given by the following expression found in
Refs. [36,3]:

F
��

"

H
(¸�#H�)�
�

(48)
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Fig. 3. (a) Di!erential element to coaxial sphere. (b) Di!erential element to perpendicular sphere.

for H51, and with ¸ and H given by

¸"

l
r

and H"

h
r
. (49)

4.2.6. Square to parallel coaxial square of diwering size
Finally, the sixth geometrical con"guration used in our experiments corresponds to the form

factor between two unequal, parallel coaxial squares A
�
and A

�
(Fig. 4). The analytical form factor

for this con"guration is given by the following expression found in Ref. [32]:

F
��

"

1
�A��ln�

[A�(1#B�)#2]�
(>�#2)(X�#2) �

#(>�#4)�
��> tan���
>

(>�#4)�
��!X tan���
X

(>�#4)�
���
#(X�#4)�
��X tan���

X
(X�#4)�
��!> tan���

>
(X�#4)�
���� (50)

for A50.2, and with X and > given by

X"A(1#B) and >"A(1!B), (51)

where A and B are given by

A"

a
c

and B"

b
a
. (52)

5. Results and discussion

Applying to the proposed bound (Eq. (38)) with 
"0.01 and �"0.005, as suggested in Section
3.3, results in a ray density given by N"10�
�� (or logN"5.02). Figs. 5}10 present the form factor
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Fig. 4. Two unequal, parallel coaxial squares.

Fig. 5. Experiments for the form factor linking a di!erential element to a right triangle: (a) form factor estimates, and (b)
time measurements. For this geometrical con"guration we set a"2, b"3 and �"303, which, using Eq. (43), results in
an analytical form factor equal to 0.0273621.

estimates as well as the time measurements (given by elapsed CPU time on a SGI R5000) for the
application of a nondeterministic method, as outlined in Section 2, to the computation of the form
factors associated with geometries described in Section 4. For each graph presented in Figs. 5a to
10a and in Fig. 12 we use a scale for the x and y axes such that we can observe the peaks and the full
convergence history of the estimates. As we can see in the graphs presented in Figs. 5a to 10a, the
estimates obtained using N"10�
�� (or logN"5.02) are within the region of asymptotic conver-
gence of the form factors.
Notice that with the application a brute-force approach, e.g. using N"10� (or logN"7), we

could obtain estimates within the region of constant convergence. The graphs regarding the time
measurements presented in Figs. 5b to 10b show, however, that in this case we would have a very
signi"cant increase in the processing time required by the nondeterministic method to compute the
form factors. This aspect suggests, therefore, that we can obtain estimates with a much higher
reliability/cost ratio using a number of rays provided by a bound based on probability theory
(Section 3). Moreover, by examining the "gures presented in Table 1, for �"0.005 and 
"0.01,
and the graphs for the time measurements presented in Figs. 5b to 10b, we can also verify that the
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Fig. 6. Experiments for the form factor linking a di!erential element to a parallel polygon: (a) form factor estimates, and
(b) time measurements. For this geometrical con"guration we set a"1, b"2 and c"3, which using Eq. (45), results in
an analytical form factor equal to 0.0522678.

Fig. 7. Experiments for the form factor linking a di!erential element to a perpendicular polygon: (a) form factor
estimates, and (b) time measurements. For this geometrical con"guration we set a"2, b"1 and c"3, which using Eq.
(46), results in an analytical form factor equal to 0.0084414.

more precise proposed bound, derived from the exponential Chebyshev inequality, allows us to
obtain estimates with a higher reliability/cost ratio than the bound derived from the ordinary
Chebyshev inequality.
The practical bene"t of using a tighter bound becomes even more noticeable when one works

with applications involving a large number of form factor computations, e.g. applications involving
radiative transfer simulations between moving objects. Recall that in the experiments presented in
this paper we are dealing with static geometries only. In more complex simulations we may,
however, have dynamic geometrical con"gurations. For example, suppose that we want to
determine the radiation transfer from a star or planet to a spacecraft or satellite [36] (Fig. 11). In
this case, we need to compute the form factor between the elements at each selected point of the
objects' trajectories. Depending on the resolution chosen for the simulation, we may need to
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Fig. 8. Experiments for the form factor linking a di!erential element to a coaxial sphere: (a) form factor estimates, and (b)
time measurements. For this con"guration we set r"1 and h"3, which, using Eq. (47), results in an analytical form
factor equal to 0.1111111.

Fig. 9. Experiments for the form factor linking a di!erential element to a perpendicular sphere: (a) form factor estimates,
and (b) time measurements. For this geometrical con"guration we set r"1, l"2 and h"3, which, using Eq. (48), results
in an analytical form factor equal to 0.0640038.

perform hundreds, or even thousands, of form factor computations. For these situations the
computational savings provided by the application of the tighter proposed bound would be highly
signi"cant, reducing the total processing time by several orders of magnitude.
Fig. 12 presents additional experiments for the form factor linking two unequal, parallel coaxial

squares. For these experiments the geometrical parameters were speci"cally selected to allow the
analysis of the suitability of the proposed bound for small values of K. The graph of form factor
estimates presented in Fig. 12a indicates that the choice of �"0.05, which, by applying the
proposed bound with 
"0.01 results in N"10�
�� (or logN"5.02), is appropriate to obtain
reliable and meaningful form factor estimates for this geometrical con"guration in which
K"0.0625. However, the graph of form factor estimates presented in Fig. 12b shows that, as
mentioned in Section 3.3, when we select a value for the uncertainty such that �'K, the ray density
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Fig. 10. Experiments for the form factor linking two unequal, parallel coaxial squares: (a) form factor estimates, and (b)
time measurements. For this geometrical con"guration we set a"2, b"4 and c"4, which, using Eq. (50), results in an
analytical form factor equal to 0.2284608.

Fig. 11. Sketch of an application involving moving objects.

provided by the proposed bound is insu$cient to obtain meaningful estimates. In this case, if we
reduce the value assigned to � by one order of magnitude such that �"0.0005(K, as also
suggested in Section 3.3, we obtain, by applying the proposed bound with 
"0.01, a ray density
given by N�
�� (or logN"7.02). As we can see in Fig. 12b, this ray density is appropriate to obtain
reliable and meaningful estimates for this geometrical con"guration in which K"0.000625.
As mentioned in Section 3.3, in our experiments the con"dence of the estimates, which are

obtained through a stochastic numerical process, is given with respect to the estimand of the
numerical form factors. Hence, a formal relationship with analytical values for the form factors
cannot established, despite the fact that one can intuitively assume that the estimands of numerical
form factors and the corresponding analytical form factors shall be very close. Nevertheless, the
accuracy of the nondeterministic method used in our experiments to compute these estimates can
be veri"ed upon the observation that the numerical estimates computed for each geometrical
con"guration converge to the analytical values associated with these con"gurations.Moreover, the
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Fig. 12. Estimates for the form factor linking two unequal, parallel coaxial squares: using (a) a"2, b"0.5 and c"4,
which results in K"0.0625, and (b) a"2, b"0.05 and c"4, which results in K"0.000625.

Table 2
Relative deviation of the numerical estimates, obtained using a ray density given
by 10�
�� (or logN"5.02) derived from the exponential Chebyshev inequality,
with respect to the analytical form factors for the geometrical con"gurations used
in our experiments

Geometrical con"guration r.d.(%)

Di!erential element to a right triangle 0.77
Di!erential element to a parallel polygon 1.48
Di!erential element to a perpendicular polygon 0.69
Di!erential element to a coaxial sphere 0.26
Di!erential element to a perpendicular sphere 1.54
Two unequal, parallel coaxial squares (with K"4) 0.99

"gures presented in Table 2 indicate that, using a ray density given by the proposed bound, we may
obtain estimates with a reasonably low deviation with respect to the analytical values. Notice that
the generation of uniformly distributed random numbers during the stochastic process was
performed using pseudo-random number generators, which in our experiments corresponds to the
standard function rand( ) [37]. The use of a more elaborated function, with wider spectral
properties, e.g. drand48() [37], may reduce the relative deviations presented in Table 2, although
it would likely introduce an additional computational overhead as well.

6. Conclusion

The computation of form factors represents the kernel of radiative transfer simulations. Numer-
ical nondeterministic methods are often used in these simulations due to their simplicity and
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generality for application to complex geometries. These methods implicitly compute form factors
using Monte Carlo sampling techniques and ray casting algorithms. As pointed out by Howell
[34], because of their accurate treatment of complex geometries, Monte Carlo based methods are
often used to validate results provided by other methods, and are likely to become the dominant
choice for treating radiative transfer problems. Their accuracy, however, depends heavily on the
ray density used in the computations, and an over dimensioned density may result in a high
computational cost in terms of processing time. The main problem is, therefore, to determine the
least number of sample rays required to obtain reliable estimates with respect to the constraints of
radiative transfer simulations, and to keep the computational costs as low as possible.
In this paper we presented a bound for the ray density required to compute estimates for form

factors between di!use elements with a high reliability/cost ratio. This bound was derived from
a probability concept, namely the exponential Chebyshev inequality. Besides its contribution to
a better theoretical foundation for the nondeterministic computation of form factor, its application
results in substantial computational time savings. For simulations involving moving objects, which
involve the computation of form factors for several instances of the parameters associated with
a given geometrical con"guration, we believe that, by applying the proposed bound, the total
computational time may be reduced by several orders of magnitude.
Our future e!orts in this area will be focus on the application of the proposed bound to other

problems involving particle transport simulation such as virtual spectrophotometry and
goniophotometry. Moreover, we intend to look more closely at the application of parallel
techniques to the computation of form factors through nondeterministic methods. Clearly, these
methods are suitable for parallelization, and there are several di!erent parallel approaches that can
be used to obtain an approximately linear speed up in radiative transfer applications involving
Monte Carlo based methods [38,34]. After all, by simply dividing the total number of rays among
a certain number of processors, one may reduce considerably the processing time. Notice that,
before using a parallel approach, one shall determine the least number of rays required to obtain
reliable results in an e$cient sequential implementation. This aspect reinforces the importance of
the proposed bound, which ful"ll this requirement as illustrated by the numerical experiments
presented in this paper.
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