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Abstract Models of light inter-
action with matter usually rely on
subsurface scattering approximations
based on the use of phase functions
– notably, the Henyey-Greenstein
phase function and its variations. In
this paper, we challenge the gener-
alized use of these approximations,
especially for organic materials, and
propose the application of a data-
oriented approach whenever reliable
measured data is available. Our

research is supported by comparisons
involving the original measured
data that motivated the use of phase
functions in algorithmic simulations
of tissue subsurface scattering. We
hope that this investigation will help
strengthen the biophysical basis
required for the predictable rendering
of organic materials.
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1 Introduction

Since the beginning of computer graphics in the late
1960s, researchers have been mostly concerned with the
process of creating realistic images of the world around
us. One of the most important stages of this process is the
simulation of light interaction with matter. Efforts in this
area resulted in predictable images of inorganic materials.
More recently, organic materials, such as plant and hu-
man tissues [18, 23, 25, 37, 48], whose scattering behavior
is characterized by a highly significant subsurface com-
ponent, have been carefully rendered to generate believ-
able images. For these materials, however, one may ask
a couple of questions. First, are the models of light inter-
action with organic materials accurate from a biophysical
point of view? Second, are these simulations predictive?

In order to answer these questions, one needs to per-
form comparisons between modeled and measured data.
In general, such comparisons are not performed, and the
employed validation approach is based solely on visual
inspection of the generated images. For applications in
several areas (e.g., entertainment and gaming industries)
believable images are usually good enough. However, if

the models were described by biophysically meaningful
parameters and the algorithms and resulting images were
accurate representations of light transport processes, the
simulations could be used in a predictive manner [17].
This would make the process of realistic image synthesis
more intuitive [2]. Furthermore, this biophysically based
approach has a broader range of applications, including
not only believable picture-making, but also scientific and
medical applications such as the noninvasive diagnosis of
skin phototraumas and tumors [10, 53].

Accuracy and computational time are often conflict-
ing issues in biophysically based rendering. Although the
main goal in this area is the design of accurate and effi-
cient models, sometimes it is difficult to obtain this perfect
combination. In order to achieve a higher level of accu-
racy, it may be necessary to add complexity to a model,
which in turn may negatively affect its computational per-
formance. However, this is not always the case. In fact, we
are going to show in this paper that one may be able to
obtain more accurate and efficient representations of bio-
physical phenomena in many cases by removing undue
complexity.

The core of any rendering algorithm is formed by the
scattering functions. These are also called phase functions
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when applied to volumetric scattering [15]. The purpose of
this paper is to investigate the foundations of subsurface
scattering simulations, including the widespread applica-
tion of the Henyey-Greenstein phase function (henceforth
referred to as HGPF) [19] in the modeling of light trans-
port in tissue. We are going to show through comparisons
with actual measured data that it negatively affects both
accuracy and predictability of subsurface scattering simu-
lations. We will demonstrate that a significant step toward
predictive tissue optics models can be given by using ex-
perimental data directly, instead of functions which came
to play just as an attempt to fit such data.

The remainder of this paper is organized as follows:
the next section provides an overview of the HGPF for-
mulation and terminology. Section 3 presents an original
chronology of tissue optics research that resulted in the
questionable generalized application of HGPF in tissue
subsurface scattering simulations. Section 4 describes the
experimental investigation setup used to demonstrate the
pitfalls of the HGPF approximations and the advantages
of a data-oriented approach. Section 5 presents the results
of these comparisons and discusses their practical implica-
tions. Finally, Section 6 concludes the paper emphasizing
the need for a multidisciplinary effort to advance this im-
portant area of research.

2 HGPF: formulation and terminology

When light hits a particle with an index of refraction dif-
ferent from that of its environment, the light is scattered.
The direction of scattering is characterized by the polar
angle θ at which the light is bent and an azimuthal angle
β in a plane normal to the direction of incidence (Fig. 1).

Fig. 1. Sketch describing the scattering angles associated with
a phase function φ(θ, β)

A phase function denoted by φ(θ, β) describes the amount
of light scattered from the direction of incidence to the
direction of scattering [57], i.e., it represents a single scat-
tering event. The probability of light scattering through an
angle θ after n scattering events is given by a multiple-
scattered phase function, a concept used by Tessendorf
and Wasdon [50] to simulate multiple scattering in clouds,
and recently applied by Premoze et al. [44] in the render-
ing of objects with subsurface scattering.

The name “phase function” has no relation to the phase
of the electromagnetic wave (light). It has its origins in
astronomy, where it refers to lunar phases [21]. Coinciden-
tally, one of the most widely used phase functions in radia-
tive transfer theory, and the focus of our investigation, the
HGPF, was designed for astrophysical applications [19].

The HGPF was presented by Henyey and Greenstein
to approximate Mie scattering in their study of diffuse ra-
diation in galaxies [19]. It is important to note, however,
that a theoretical derivation for this phase function was not
provided by Henyey and Greenstein [19]. The HGPF is
given by

φ(g, θ) = 1− g2

(
1+ g2 −2g cos θ

) 3
2

, (1)

where the parameter g is defined as the integral over all
angles of the phase function multiplied by the cosine of
the angle θ. The HGPF is actually a function of three pa-
rameters: g, θ and β. It just happens that an azimuthal
symmetry of the phase function is assumed, i.e., the func-
tion is constant with respect to β. Sometimes is convenient
to write the HGPF multiplied by γ

K , where γ represents
the spherical albedo [19], and K is a constant that enforces
unit area for a probability density function (please refer
to the appendix). We choose, in accord with most com-
puter graphics authors, to write the HGPF as described in
Eq. 1. By varying parameter g, called the asymmetry fac-
tor, in the range −1 ≤ g ≤ 1, it is possible to characterize
HGPFs ranging from a completely backward-throwing to
a completely forward-throwing form (Fig. 2).

The HGPF as defined in Eq. 1 cannot, however, be used
to describe simultaneous forward and backward lobes that
are typical in many cases of Mie scattering as well as
Rayleigh scattering [62]. For this reason, astrophysicists
proposed variations based on the superposition of two
HGPFs [27, 55, 62]:

φ(g1, g2, θ, u) = uφ(g1, θ)+ (1−u)φ(g2, θ), (2)

where φ(g1, θ) and φ(g2, θ) are of the form given by Eq. 1
and u is a “blending factor” used to weight the two com-
ponent HGPFs. Figure 3 illustrates three scattering pro-
files provided by the two-term HGPF.

The asymmetry factor is often called the anisotropy
factor. We employ the former term throughout this paper
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Fig. 2. Scattering diagrams illustrating different scattering profiles
provided by the HGPF

Fig. 3. Scattering diagrams illustrating different scattering profiles
provided by the two-term HGPF with g1 = 0.5 and g2 = −0.5

since we consider the use of the term “anisotropy” in-
appropriate. Recall that the function has no dependence
on the azimuthal angle. Furthermore, there is no direct
relationship between this parameter and a macroscopic
anisotropic behavior of a given material, i.e., a dependence
on both the polar and the azimuthal angles measured from
the material’s normal and used to define the direction of
incidence of the incoming light.

3 HGPF in tissue subsurface scattering:
chronology and problems

The HGPF is neither based on a mechanistic theory of
scattering [22] nor does its asymmetry factor have any bi-
ological meaning. Two important questions then come to
mind. Why is the HGPF extensively used in rendering of
both inorganic and organic materials? What problems may
result from its usage? In order to answer these questions,

we need to go back in time and track down the sequence
of events that culminated in its use in tissue subsurface
scattering simulations.

In 1976, bioengineers [40] attempted to use the HGPF
to approximate Mie scattering in blood. Their investiga-
tion did not show a good agreement between the HGPF
approximation and the experimental data, however.

Later on, Bruls and van der Leun [8] performed go-
niometric measurements of the scattering profile of two
types of skin tissues – namely, the stratum corneum and
the epidermis – obtained from real specimens. These tis-
sues are characterized as forward-scattering media [1]. In
the former, this behavior is due to the alignment of the
fibers, while in the latter, it is due to Mie scattering caused
by particles that are approximately the same size of the
wavelength of light (e.g., cell organelles) [8]. The average
thicknesses of the stratum corneum and epidermis samples
used in the measurements performed by Bruls and van der
Leun [8] were 26 µm and 69 µm, respectively [7].

For the visible region of the light spectrum, the meas-
urements were performed at 436 nm and 546 nm (Table 1)
with an angle of incidence of 0◦. Although some light
might be reflected on the surface due to Fresnel effects,
due to the normal angle of incidence and the refractive
index differences, this portion of reflected light was con-
sidered negligible [6, 7]. Also, because of the approximate
match of the refractive indices of the specimens and the
sample carriers, the refraction of the transmitted light due
to Fresnel effects was also assumed to be negligible [8].

The resulting data correspond to the amount of radi-
ation transmitted into a solid angle ∆ω, centered around
the direction given by θ, as a fraction of the total radi-
ation transmitted in perpendicular irradiation. The meas-
ured scattering distributions were in the range given by

Table 1. Scattering profiles of stratum corneum and epidermis tis-
sues measured at 436 nm and 546 nm, and presented in terms of
the cumulative fractions (%), C(θ), of radiation transmitted within
a certain angle θ with respect to the tissue’s normal (redrawn with
permission from [8] for completeness)

Angle Stratum corneum Epidermis

θ 436 nm 546 nm 436 nm 546 nm

2.5◦ 17.6 20.6 2.6 4.0
7.5◦ 55.2 60.2 16.1 22.5

12.5◦ 70.9 75.2 30.8 39.7
17.5◦ 79.1 82.3 43.6 52.5
22.5◦ 84.1 86.5 54.5 62.4
27.5◦ 87.6 89.4 63.9 70.2
32.5◦ 90.3 91.5 71.9 76.7
37.5◦ 92.5 93.4 79.0 82.4
42.5◦ 94.4 95.0 85.0 87.2
47.5◦ 96.1 96.5 90.1 91.4
52.5◦ 97.6 97.8 94.3 94.9
57.5◦ 99.0 99.0 97.8 97.9
62.5◦ 100.0 100.0 100.0 100.0
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0◦ ≤ θ ≤ 62.5◦. The missing fractions, beyond 62.5◦, were
considered negligible by Bruls and van der Leun [8], and
the cumulative fractions of the transmitted energy were
expressed as

Ci(θ) =
∫ θi

0◦ I(θ) sin θdθ
∫ 62.5◦

0◦ I(θ) sin θdθ
×100%, (3)

where I corresponds to the transmitted radiant intensity,
and θi = 5i +2.5◦ for i = 0, . . . , 12.

It is important to note that the scattering profile of skin
tissues, especially the epidermis, is relevant not only for
simulation of skin appearance, but also for the visual di-
agnosis of medical conditions such as skin melanoma [10,
53]. In their paper, Bruls and van der Leun [8] suggested
the measured scattering profile of these tissues could be
approximated by single-particle phase functions:

We compared epidermal profiles with results from
multiple scattering theory. Van de Hulst (1980) pro-
vides elaborate computations of scattering profiles of
layers filled with particles, on the basis of a single-
particle scattering phase function that ranges from
diffuse to very forward-oriented. Our epidermal pro-
files are compatible with profiles from his Table 35.

The table from van de Hulst [56] mentioned above cor-
responds to the HGPF. In 1987, Jacques et al. [22] fol-
lowed Bruls and van der Leun’s suggestion, and tried to
approximate the measured scattering profile of another
skin tissue, namely the dermis, using HGPF with g =
0.81. Yoon et al. [64] used similar g values for a human
aorta. The experiments on the dermis and aorta tissues
were aimed at specific medical applications and conducted
with a HeNe laser (632.8 nm). Motivated by these works,
Prahl [42] proposed a Monte Carlo-based algorithm to
model light transport in tissue during laser irradiation. Al-
though this Monte Carlo-based approach was used before
to study light propagation in tissue [61], Prahl’s algorith-
mic formulation, to the best of our knowledge, was the
first proposed to use the HGPF to compute the scatter-
ing of photons in organic tissues. In order to compute
the trajectories of the scattered photons, Prahl [42] used
a warping function provided by Witt [62], which was ob-
tained by setting

ξ1 = 2π

∫ cos θ

−1
φ
(

cos θ ′, g
)
d cos θ ′, (4)

and finding upon integration that

cos θ = 1

2g

{

1+ g2 −
[

1− g2

1− g +2gξ1

]2}

, (5)

where ξ1 is a uniformly distributed random number on the
interval [0, 1]. An alternative original derivation of this

warping function is given in the appendix. For symmetric
scattering (g = 0) the expression cos θ = 2ξ1 −1 should
be used [43]. Since an azimuthal symmetry of the phase
function is assumed, the azimuthal angle can be generated
using β = 2πξ2, where ξ2 is a random number uniformly
distributed on the interval [0, 1].

In 1989, biomedical researchers [58] attempted to fit
the HGPF to the goniometric measurements of Bruls and
van der Leun [8], and used a least-squares method to de-
termine suitable values for g. After that, it was assumed
that the HGPF could be used to approximate the scattering
profile of organic materials regardless of wavelength, and
only a few works questioned its applicability for biologi-
cal cells [12, 36]. In fact, the use of HGPF in analytical
and algorithmic subsurface scattering simulation became
widespread in many areas involving tissue optics [53], and
new comprehensive goniometric measurements for tissue
subsurface scattering were not performed.

In 1993, graphics researchers [18] introduced the algo-
rithmic formulation for the simulation of tissue subsurface
scattering proposed by Prahl [42] to the graphics litera-
ture. This included the use of the HGPF described above.
In their examples, Hanrahan and Krueger used g = 0.81
for the dermis and g = 0.79 for the epidermis. They did
not include the stratum corneum in their skin representa-
tion. Since then, the HGPF has also been used in computer
graphics applications involving subsurface scattering sim-
ulations [24, 25, 37, 41, 44, 48].

Are there indeed any problems with this use of HGPF
in tissue subsurface scattering simulations? First, recall
that the asymmetry factor g has no direct connection to the
underlying biophysical phenomena. Second, as described
above, the HGPF was initially meant to be used in tissue
optics just as a function to fit multiple scattering data of
skin measured at specific wavelengths. As we are going to
show in the following sections, the HGPF approximations
deviate from the measured data.

The suitability of HGPF approximations is even more
questionable when they are used to describe the subsur-
face behavior of materials characterized by a dominant
reflective-refractive scattering (caused by internal struc-
tures much larger than the wavelength of light) such as
plant tissues [16]. In these applications the selection of
values for the asymmetry factor g is made on a trial-and-
error basis, and it has neither an empirical nor a theoretical
foundation. For example, Hanrahan and Krueger [18], re-
ferring to the work by Ma et al. [33], used g = 0.3 in
their simulations of internal scattering of plant leaves. It
is important to note that the experiments performed by
Ma et al. involved a single-wavelength laser (632.8 nm),
and, to the best of our knowledge, did not include the
selection of biologically plausible values for asymme-
try factors. In this case, a simple cosine distribution
would be closer to the real thing than the use of the
HGPF, since light is quickly randomized within plant tis-
sues [5, 54].
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As another example, Jensen et al. [25] used g = 0.85
for the whole skin. A single value/or the whole skin, i.e.,
specific values for each constituent tissue are not consid-
ered. We infer that this value comes from a paper that
followed Bruls and van der Leun since no direct refer-
ence was provided by Jensen et al. [25]. In a recent paper,
Jensen and Buhler [23] used the HGPF with the asym-
metry values provided by van Gemert et al. [58]. Another
question then comes to mind: why can one not use the ac-
tual data from Bruls and van der Leun [8]? For example,
Krishnaswamy and Baranoski [28] used the values pro-
vided by Bruls and van der Leun in the development of
a biophysically based spectral skin model (BioSpec) [28],
whose reflectance and transmittance results show a good
quantitative and qualitative agreement with skin spectral
data for both the stratum corneum and epidermal tissues.
In the case of deeper dermal layers, the spatial distribution
of the scattered light quickly becomes diffuse after the first
interactions [22]. In this case, a simple cosine distribution
would also be closer to the real thing than the use of the
HGPF [28]. This approach was also used in the BioSpec
model. Incidentally, although the near-Lambertian bidi-
rectional transmittance distribution function (BTDF) of
the whole skin can be observed in body parts such as
ears, eyelids, and fingers, actual measured data is scarce.
Figure 4 presents images generated using BioSpec to il-
lustrate the translucency of human skin in a predictive
manner – in this case, according to variations in the pig-
mentation level.

The incorporation of the HGPF in models of light in-
teraction with matter can affect not only transmission,
but also reflection of light. Since the HGPF as defined
in Eq. 1 cannot be used to describe simultaneous forward
and backward lobes, it directly affects the propagation
of light in one direction, e.g., upwards. However, algo-
rithmic models [18, 42] can apply the function every time
a ray traverses a medium, either upwards or downwards,

Fig. 4. Images generated using the BioSpec model [28] to illus-
trate variations in the translucency of skin tissues associated with
different levels of pigmentation. Left: lightly pigmented specimen.
Right: moderately pigmented specimen

therefore affecting both reflection and transmission. For
models that apply the superposition of HGPFs (Sect. 2),
such as the model used by Jensen et al. [24] to simulate
wet powdered materials, the combined HGPFs can affect
the reflection and the transmission of light at each inter-
action. Among the powdered materials mention by Jensen
et al. are different types of soil such as sand and clay. As
stated by Li [32], these phase functions are not derived
from physical principles in terms of the physical and ge-
ometrical properties of soil particles, and their adjustable
nonphysical parameters can be related to the properties of
the soil particles only empirically. Hence, models using
these phase functions may be used to generate believable
images of soils, but not predictable ones.

It is worth noting, however, that for many materials,
there is neither measured data available nor an accurate
understanding of the underlying physical processes in-
volved in their interaction with light. In these situations,
one may need to resort to a level of abstraction that can
provide a reasonable approximation. For example, to the
best of our knowledge, the scattering data for space neb-
ulae is scarce. In this case, the use of empirical phase
functions may be the best approach that one can apply.

In short, we believe that the generalized application
of HGPF approximations to any organic tissue and any
wavelength may lead to incorrect results, specially using
asymmetry factors determined by fitting the HGPF to spe-
cific data sets that may have no relationship with the mate-
rial at hand. Furthermore, we maintain that the use of this
function adds undue complexity to algorithmic subsurface
scattering simulations when measured data is available.
In the following sections, we will show that these simu-
lations can be performed with a higher accuracy-to-time
ratio using measured data directly.

4 Experimental investigation set-up

In order to determine the accuracy of scattering profiles
obtained using the HGPF, we compared these profiles with
the experimental goniometric data (between 0◦ and 62.5◦)
provided by Bruls and van der Leun [8]. For the sake
of consistency with the experiments performed by van
Gemert et al. [58], we do not take the missing fractions
(beyond 62.5◦) into account in our experiments. Also, re-
call that according to estimates provided by Bruls and van
der Leun [8], these fractions are negligible.

For the HGPF asymmetry factors, we considered the
values determined by van Gemert et al. [58], which have
been commonly used in algorithmic subsurface scatter-
ing simulations. One might argue that the fitting approach
used by van Gemert et al. [58] to determine the g values
could be replaced by another approach that could result
into better approximations for the profiles. For this reason,
we also used g values obtained by applying the RMS error
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Table 2. Asymmetry factors obtained by fitting the HGPF to scat-
tering profiles of stratum corneum and epidermis tissues measured
at 436 nm and 546 nm

Asymmetry factors Stratum corneum Epidermis

Source 436 nm 546 nm 436 nm 546 nm

RMS error metric 0.935 0.943 0.761 0.821
van Gemert et al. 0.900 0.917 0.748 0.781

metric [15] to the measured data. We have experimented
with other error metric approaches, e.g., absolute and rela-
tive deviations [4]. We selected the results obtained using
the RMS error metric for presentation since the RMS g
values provide a closer visual match to the results obtained
using the measured data. The asymmetry factors used in
our comparisons are presented in Table 2. They corres-
pond to the measured data for the visible range of the light
spectrum (436 nm and 546 nm) provided by Bruls and van
der Leun [8].

To determine the asymmetry factors, we initially sub-
tracted the consecutive cumulative fractions of the trans-
mitted radiation (Eq. 3) to get F(i)

τ = Ci −Ci−1, for i =
1, . . . , 12, and F(0)

τ = C0. Thus,

F(i)
τ =

∫ θi
max(0◦,θi−5◦) I(θ) sin θdθ

∫ 62.5◦
0◦ I(θ) sin θdθ

, (6)

where θi = 5i +2.5◦, for i = 0, . . . , 12.
Next, to obtain the HGPF data to be compared to the

data from Eq. 6, we computed the following cumulative
density function:

P(θ < θ ′) =
∫ θ ′

0
φg(g, θ) sin θdθ, (7)

and we obtained

Cg,i = P(θ < θi)

P(θ < 62.5◦)
, (8)

where θi = 5i + 2.5◦, for i = 0, . . . , 12. We then per-
formed the operation F(g,i)

τ = Cg,i −Cg,i−1 for i ≥ 1 and
F(g,0)

τ = Cg,0.
The RMS error metric εRMS(g) used to compare the

F(i)
τ and the F(g,i)

τ , for i = 0, . . . , 12, is given by

εRMS(g) =
√√
√√ 1

m

m−1∑

i=0

(
Fi

τ − F(g,i)
τ

)2
, (9)

where m = 13. We applied the Nelder-Mead simplex
search algorithm [30] to minimize εRMS(g) over g ∈
[−1, 1] to obtain the most suitable asymmetry factor.

We believe that a data-oriented approach provides
approximations with a higher accuracy-to-time ratio. In
order to confirm this assertion, we implemented a random-
ized table look-up algorithm. The scattering angles are
stored in a table, whose access indices correspond to the
measured fractions of scattered radiation. For each pho-
ton, we generate a uniformly distributed random number
on the interval [0, 1]. We then multiply this number by the
table size. The integer part of the resulting value is used
to access the corresponding scattering angle stored in the
table. The table size is limited by the granularity of the
measured goniometric data, which consists of values with
one decimal digit accuracy (Table 1). Thus, for each wave-
length considered, we used a table with 1000 entries. The
intermediate data values were obtained through interpola-
tion, another design choice based on the granularity of the
measured goniometric data. For the sake of simplicity and
due to the lack of information about the scattering behav-
ior between data points, we used linear interpolation.

We performed two sets of experiments. In both sets,
we generate N samples (photons) represented by random
numbers uniformly distributed on the interval [0, 1].

In the first set (with N = 105), for each photon, we de-
termined the scattering angle given by Eq. 5 with the g
values presented in Table 2 and the scattering angle given
by the randomized table look-up technique. The num-
ber of samples per measured scattering angle for each
approach was recorded and the comparisons were per-
formed. Since the experimental data was limited to 62.5◦,
the scattering angles given by the HGPF beyond this value
were discarded and not taken into account into the sample
summations.

The second set of experiments (with N = 106) fol-
lowed a similar protocol. It was performed through the
implementation of a virtual goniometer [29], which was
used to compute the BTDF (bidirectional transmittance
distribution function) associated with the scattering pro-
files obtained using the HGPF and the randomized table
look-up technique. Since an azimuthal symmetry of the
phase function is assumed (see Sect. 2), the BTDF values
were computed on the plane given by the incident light
and the tissue’s normal. The BTDF values corresponding
to the measured data, denoted by f i

τ , for i = 0, . . . , 12,
were calculated using

ft( �ωi, �ωt, λ) = F(i)
τ (λ)

�ωt cos θ
, (10)

where �ωi and �ωt correspond to the incidence and trans-
missive solid angles, and λ corresponds to the wavelength
at which the measurements were performed. Similarly, to
compute the BTDF corresponding to HGPF data, we re-
placed F(i)

τ by F(g,i)
τ in the equation above.

It is worth noting that the spatial patterns of light distri-
bution can be more accurately represented by the bidirec-
tional scattering-surface distribution function (BSSDF),
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or its components; namely, the bidirectional scattering-
surface reflectance-distribution function (BSSRDF) and
the bidirectional scattering-surface transmittance-distri-
bution function (BSSTDF) [38]. However, as appropri-
ately mentioned by Glassner [15], the BSSDF is a difficult
function to measure, store, and compute with, due its de-
pendency on four parameters: the incidence and outgoing
directions, the wavelength, and the position on the sur-
face. For this reason, sometimes it is more practical to
make simplifying assumptions about the material in order
to obtain a more tractable function. For example, if one
assumes that a given material’s properties are the same ev-
erywhere, the position parameter becomes irrelevant [15].
In this case, one can work with simpler function – namely,
the bidirectional surface-scattering distribution function
(or simply the BDF) – which can also be decomposed into
its two components: BRDF (bidirectional reflectance dis-
tribution function) and BTDF. The reason we use BTDF in
this investigation instead of BSSTDF is because the ori-
ginal set of subsurface measurements that triggered the
generalization of the HGPF did not account for positional
variations.

Organic tissues, such as the stratum corneum and epi-
dermis, are usually considered as part of a whole material,
i.e., human skin. Moreover, there are other factors affect-
ing subsurface scattering such as the absorption of light

Fig. 5. Comparison between re-
constructed transmitted radia-
tion curves and goniometric
measured data for the stratum
corneum and epidermis tissues

by pigments [28]. However, one may use simple abstrac-
tions, called “phantom materials,” to expand the scope
of visual observations. Such abstractions are extensively
used in biomedical research [10, 47], and similar abstrac-
tions have also being used in computer graphics [2, 3]. In
our investigation, these phantom materials are represented
by thin translucent sheets with a forward-scattering be-
havior simulated using the HGPF (with the values given
in Table 2) and the randomized table look-up technique.
They are illuminated by Lambertian light sources repre-
sented by background surfaces. The resulting images were
obtained using a standard path-tracing algorithm without
postprocessing signal smoothing [15]. We remark that the
purpose of these images is just to visually illustrate the
spatial patterns of light distribution resulting from the ap-
plication of the HGPF and the data-driven approach.

5 Results and discussion

The results of the first set of experiments that consider
the stratum corneum data are shown in Fig. 5 (top row).
As expected, the randomized table look-up technique pro-
vides the closest match to the measured data, which can
also be observed in Table 3. It is worth noting that the use
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Table 3. Relative error figures – namely, maximum and average values (%) – for the approximation methods (with N = 105) with respect
to the goniometric data for the stratum corneum and epidermis measured at 436 nm and 546 nm

Stratum corneum Epidermis

Approximation approach 436 nm 546 nm 436 nm 546 nm

Max. Avg. Max. Avg. Max. Avg. Max. Avg.

HGPF, with g provided by van Gemert et al. 51.96 27.08 47.71 27.76 42.40 14.04 51.24 16.09
HGPF, with g provided by RMS error metric 53.03 23.08 52.79 21.90 35.24 14.57 30.02 18.43
randomized table look-up 7.22 3.32 8.48 4.17 3.45 1.56 3.25 1.70

of asymmetry factors given by the RMS error metric pro-
vides a closer approximation than the values provided by
van Gemert et al. [58], which have been used in computer
graphics simulations [18, 23].

The results of the first set of experiments that consider
the epidermis data are given in Fig. 5 (bottom row). In
this case, the disparity between the HGPF approximations
and the measured data, which increases for data measured

Fig. 6. Reconstructed BTDF
values for the stratum corneum
tissue at 436 nm. Left: table
look-up. Middle: HGPF (with
RMS g). Right: HGPF (with g
provided by van Gemert et
al. [58]). Top row: Cartesian
plot. Bottom row: orthographic
projection of the scattering dia-
gram

Fig. 7. Reconstructed BTDF
values for the stratum corneum
tissue at 546 nm. Left: table
look-up. Middle: HGPF (with
RMS g). Right: HGPF (with g
provided by van Gemert et
al. [58]). Top row: Cartesian
plot. Bottom row: orthographic
projection of the scattering dia-
gram

at 546 nm, can be observed. Again, a more accurate ap-
proximation is provided by the randomized table look-up
technique. It introduces even smaller errors with respect
to the epidermis data set, which can also be observed in
Table 3.

Figures 6 and 7 present the results of the second set
of experiments with stratum corneum data. They show
that the quantitative discrepancies between BTDF values
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Fig. 8. Reconstructed BTDF
values for the epidermis tissue
at 436 nm. Left: table look-
up. Middle: HGPF (with RMS
g). Right: HGPF (with g pro-
vided by van Gemert et al. [58]).
Top row: Cartesian plot. Bottom
row: orthographic projection of
the scattering diagram

Fig. 9. Reconstructed BTDF
values for the epidermis tissue
at 546 nm. Left: table look-
up. Middle: HGPF (with RMS
g). Right: HGPF (with g pro-
vided by van Gemert et al. [58]).
Top row: Cartesian plot. Bottom
row: orthographic projection of
the scattering diagram

obtained using the randomized table look-up and the re-
constructed BTDF values obtained using the HGPF are
small, with closer approximations being obtained using
asymmetry factors provided by the RMS error metric.

The results of the second set of experiments with epi-
dermis data, which are presented in Figs. 8 and 9, show
noticeable quantitative and qualitative discrepancies be-
tween the BTDF values obtained using the randomized
table look-up and the BTDF values obtained using the
HGPF. For these experiments, closer approximations were
also obtained using asymmetry factors provided by the
RMS error metric.

In summary, our experiments indicate that the random-
ized table look-up provides a more accurate agreement
with the measured data. The magnitude of the discrepan-
cies between this approach and the HGPF approach may,
however, have a different significance depending on the
application. For rendering frameworks aimed at scientific
and medical applications, it is clearly relevant. For ex-
ample, the epidermis contains an important skin pigment,

melanin. The amount of light absorbed by this pigment
affects not only the skin’s appearance [52], but also the vi-
sual diagnosis of medical conditions such as melanomas at
early stages [10]. This amount depends on the path-length
of the incoming photons, which is in turn affected by the
tissue’s scattering properties. In theory, one could select
another phase function to fit the scattering data, e.g., the
Reynolds-McCormick [45, 49] or the Dunn and Richards-
Kortum [12, 36] phase functions. The generalized used of
these functions, however, has the same drawbacks as the
generalized use of the HGPF.

For rendering frameworks aimed at believable picture-
making applications, the visual effects caused by the dif-
ferent approaches may become more pronounced or negli-
gible depending on the illumination conditions (e.g., col-
limated or diffuse incident beams), the structural charac-
teristics of the materials (e.g., thickness), and perception
issues associated with the human visual system [17]. Fig-
ures 10 to 12 illustrate this aspect through images of phan-
tom materials generated using the stratum corneum and
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Fig. 10. Images of a phantom material with a scattering behavior
simulated using data corresponding to the scattering behavior of
the stratum corneum tissue measured at 436 nm (top row) and
546 nm (bottom row). Left column: applying the randomized table
look-up. Middle column: applying the HGPF with the asymmetry
factors provided by the RMS error metric. Right column: applying
the HGPF with the asymmetry factors provided by van Gemert et
al. [58]. Surfaces are separated by 0.9 length units

Fig. 11. Images of a phantom material with a scattering behavior
simulated using data corresponding to the scattering behavior of the
stratum corneum tissue measured at 546 nm. Top row: applying the
randomized table look-up. Bottom row: applying the HGPF with
the asymmetry factor provided by the RMS error metric. The sur-
faces are separated by 0.2 (left column), 1.2 (middle column) and
1.8 (right column) length units

the epidermis data respectively. For example, although the
experiments presented earlier indicated small discrepan-
cies between the approximation approaches with respect
to the stratum corneum data, the images shown in Fig. 10
present remarkable differences in terms of the phantom
material’s translucency. Such differences can vary depend-
ing on, for instance, the distance between the materials’
interfaces (which, for an actual tissue, may be associated

Fig. 12. Images of a phantom material with a scattering behavior
simulated using data corresponding to the scattering behavior of the
epidermis tissue measured at 436 nm (top row) and 546 nm (bottom
row). Left column: applying the randomized table look-up. Middle
column: applying the HGPF with the asymmetry factors provided
by the RMS error metric. Right column: applying the HGPF with
the asymmetry factors given by van Gemert et al. [58]. Surfaces are
separated by 0.3 length units

with its thickness) as illustrated in Fig. 11. On the other
hand, despite the evident quantitative and qualitative dis-
crepancies between the approximation approaches with
respect to the epidermis data verified in the experiments
presented earlier, the images present in Fig. 12 (top row)
do not present noticeable differences in terms of the phan-
tom material’s translucency.
Regarding the computational costs of each approach, re-
call that the HGPF formulation includes an expensive
fractional exponentiation. For example, for the SGI MIPS
R14000 processors used in our experiments, this operation
is performed five times slower than a randomized table
look-up operation. On the other hand, the data-oriented
approach requires additional storage space. For instance,
the tables used in our experiments occupy 36 kB of mem-
ory. Taking into account the relatively large amount of
memory available in modern computers and their decreas-
ing price, one may consider this figure quite acceptable.
Hence, even for these cases, where the HGPF approxi-
mation provides a good match to the measured data, a fa-
miliar question resurfaces. Why not use the actual data
directly? It is less expensive, the results are more accurate,
and the simulation is not controlled by an arcane parame-
ter with no biological basis, which is a crucial criterion to
obtain predictable images as illustrated in the development
of the BioSpec model [28].

As large multispectral databases become available,
memory space may become an issue, and the table size
may slow down the simulations, since it can potentially
cause many memory swaps. In these situations, numer-
ical techniques, such as principal component analysis
(PCA) [26], could be used to reduce the dimensionality
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of such databases as it has been done in colorimetry for
many years [20, 59]. These techniques not only provide
compact databases, but also support the fast addition of
new spectral data.

We remark that besides the direct effect on the pre-
dictability of algorithmic simulations, the selection of
asymmetry factors may have further theoretical implica-
tions in tissue subsurface scattering. For example, Jensen
and Buhler [23] used a diffusion approximation to im-
prove the efficiency of their subsurface scattering simula-
tions. They state that this approximation has been shown
by Furutso [14] to be accurate when σa

σa+σs
� 1− g2,

where σa and σs correspond to the material’s absorp-
tion and scattering coefficients, respectively. Clearly, in
order to apply this relationship, one needs to know the
values of its terms, which in turn come from measured
data, especially the asymmetry factor g. As shown by our
experiments, the value of g may result from a fitting ap-
proach that does not match the measured data accurately,
i.e., it may itself be an approximation.

Finally, during this investigation, we unveiled two ad-
ditional accuracy issues related to the application of the
diffusion approximation [23] to describe the subsurface
scattering of organic materials – in particular, human skin
tissues. First, the diffusion approximation is not suitable
when the scattering is mostly in the forward direction [13,
14, 63]. As we have shown in this paper, the measurements
performed by Bruls and van der Leun [8] demonstrate
that both the stratum corneum and the epidermis tissues
are highly forward-scattering media. Second, the diffusion
theory is not applicable when the absorption coefficient is
not significantly smaller than the scattering coefficient for
turbid media [46, 49, 63]. Recall that human skin is char-
acterized by the presence of pigments [28, 39, 51] such
as melanin particles, which have a significant absorption
cross-section [9].

6 Conclusion and future work

Phase functions, such as the HGPF and its variations, were
originally used in tissue subsurface scattering simulations
to fit data measured at specific wavelengths. Since then,
their application has been extended to different organic
materials despite the lack of supporting measured data and
the fact that their parameters have no biological mean-
ing. The investigation described in this paper demonstrates
that a data-oriented approach increases the accuracy-to-
time ratio of algorithmic subsurface scattering simulations
and contributes to their predictability, since the simula-
tions are no longer controlled by arcane parameters.

Our investigation also highlights a key issue in bio-
physically based predictive rendering – namely, the short-
age of reliable measured data. Many computer graphics
researchers have been working to minimize this prob-

lem [11, 17, 31, 34, 35, 60], and a substantial amount of
goniometric surface data has been collected and analyzed.
Besides being scarcer, goniometric subsurface data may
also contain some degree of random noise, which is usu-
ally not filtered out by the approximation methods. There-
fore, in order to develop predictive subsurface scattering
algorithms, we believe that efforts should also be focused
on the reliable multispectral measurement of subsurface
scattering.
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Appendix: HGPF warping function

The HGPF, φ, is a function of two angles: θ and β. That is,
φ/

∫
S φ is the probability density function over the entire

sphere, S. Note that φ/
∫ π

0 φ(θ)dθ is not the probability
density function for θ over [0, π]. Since an azimuthal sym-
metry of the phase function is assumed, i.e., the function is
constant with respect to β, the azimuthal angle can be gen-
erated using 2πξ2, where ξ2 is a random number uniformly
distributed on the interval [0, 1]. To generate θ, we need
to invert the cumulative density function for θ: P(θ < θ ′).
This can be expressed as

P(θ < θ ′) = 1

K

∫

θ<θ ′
φ(θ, β)dω, (11)

where K = ∫
S φ(θ, β)dω is the constant that enforces unit

area for probability density.
Expanding Eq. 11 yields

P(θ < θ ′) = 1

K

∫ 2π

0

∫ θ ′

0

1− g2

(
1+ g2 −2g cos θ

)3/2 sin θ dθ dβ

= 1− g2

K

∫ 2π

0
dβ

∫ θ ′

0

sin θ dθ
(
1+ g2 −2g cos θ

)3/2

= 2π

K

(
1− g2)

∫ θ ′

0

sin θ dθ
(
1+ g2 −2g cos θ

)3/2 .

Let u = 1+ g2 −2g cos θ. Then du = 2g sin θ dθ and u
ranges from 1+g2 −2g = (1−g)2 to 1+g2 −2g cos θ ′ as
θ ranges from 0 to θ ′.
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Now, we have

P(θ < θ ′) = π

Kg

(
1− g2)

∫ 1+g2−2g cos θ ′

(1−g)2
u− 3

2 du

= −2π

Kg

(
1− g2)u− 1

2

∣∣∣
∣

1+g2−2g cos θ ′

(1−g)2
,

which results in

P(θ < θ ′) = 2π

Kg

(
1− g2)

(
1

1− g
− 1

√
1+ g2 −2g cos θ ′

)

.

(12)

Noting that P(θ < π) = 1, we can derive K as follows:

K = 2π

g

(
1− g2)

(
1

1− g
− 1

√
1+ g2 −2g cos π

)

= 2π

g

(
1− g2)

(
1

1− g
− 1

√
1+ g2 +2g

)

= 2π

g

(
1− g2)

(
1

1− g
− 1

√
(1+ g)2

)

= 2π

g

(
1− g2)

(
1

1− g
− 1

1+ g

)

= 2π

g

(
1− g2)1+ g − (1− g)

1− g2

= 2π

g
·2g

= 4π.

Substituting back into (12) yields

P(θ < θ ′) = 1− g2

2g

(
1

1− g
− 1

√
1+ g2 −2g cos θ ′

)

.

(13)

To generate θ ′, we let P(θ < θ ′) = ξ1, where ξ1 is a uni-
formly distributed random number on the interval [0, 1],
and solve for θ ′. Thus,

ξ1 = 1− g2

2g

(
1

1− g
− 1

√
1+ g2 −2g cos θ ′

)

⇒ 1
√

1+ g2 −2g cos θ ′ = 1

1− g
− 2gξ1

1− g2

⇒ 1
√

1+ g2 −2g cos θ ′ = 1+ g −2gξ1

1− g2

⇒
√

1+ g2 −2g cos θ ′ = 1− g2

1+ g −2gξ1

⇒ 1+ g2 −2g cos θ ′ =
(

1− g2

1+ g −2gξ1

)2

⇒ cos θ ′ = 1

2g

(

1+ g2 −
(

1− g2

1+ g −2gξ1

)2)

.

In summary, to generate a random direction distributed
according to the HGPF and represented by the pair (θ, φ),
we can use the following warping function:

(θ, β) = (14)
(

cos−1

(
1

2g

{

1+ g2 −
[

1− g2

1+ g −2gξ1

]2})

, 2πξ2

)

.
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