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1 Introduction

In radiosity algorithms the average radiance of � Lambertian patches is approximated by
solving a linear system with � unknowns. When � is small (i.e. fewer than thousands of
patches), general matrix methods like Gauss-Siedel can be used where the explicit �����
matrix can be pre-computed and stored [5]. When � is large, progressive techniques are
used where the matrix rows or elements are recomputed as needed [4]. When � is very
large (i.e. hundreds of thousands of patches), stochastic techniques can avoid computing
or storing the � � elements of the matrix [10].

In applications where � is small enough to store the entire matrix in main mem-
ory, general matrix techniques will be faster than progressive techniques

�
. For “massing

studies” [8] the lighting can be examined on simple geometric approximations of the en-
vironment being designed, and � can be very small. When the color scheme and lighting
are being designed, the computationally expensive part (form factors) of the matrix in
the linear system can be reused as the material properties are changed. For these appli-
cations the fastest possible general matrix solution is desirable.

This paper examines the Chebyshev method for solving linear systems, which for
environments with high average reflectance can converge faster than the methods usu-
ally used in radiosity problems. We discuss some important characteristics of the linear
systems in radiosity applications. We also look for solution methods that converge in
small amounts of time, as opposed to a small number of iterations. For this discussion
we assume a conventional RISC architecture, where coherent memory access is vital.

1.1 Radiosity System of Linear Equations

For an environment divided into � patches, the total spectral radiant power leaving a
patch depends on the spectral radiant power emitted by the patch plus the spectral radiant
power that is reflected. The spectral radiant power depends in turn on the total spectral
radiant power leaving the other patches in the environment. The following system of
equations represents the process of spectral radiant power transfer:

	�

��	��
���� 
��� � � ���
� 
�	 � ���� "!�#%$'&)( ��*,+.-0/1/2/ � (1)

3
Progressive techniques will initially converge faster because they can begin iterations before
computing the entire matrix. If general matrix techniques are modified to gradually construct
the matrix during initial iterations, then this advantage of progressive method goes away.



where:	 
 �
total spectral radiant power leaving patch

(
(watts/nm).	 �
 �

spectral radiant power emitted by patch

(
(watts/nm).� 
 �

reflectivity of patch

(
(dimensionless).�

� 
 �
fraction of energy leaving patch 4 hitting patch

(
(dimensionless).

Applying the mathematical derivation described in [1] we get the classical expres-
sion in terms of spectral radiant exitance, 5 , which holds for each patch in the environ-
ment: 5 
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Radiosity, ? , is the term used for radiant exitance in the computer graphics literature.
Determining the radiant exitance (or radiosity) of each patch involves solving the linear
system @A? �B6

, given by:CDD
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Iterative methods used to solve the radiosity system of linear equations can be di-
vided into general matrix methods, which update all components of the solution vector
on each iteration, and radiosity-specific methods Q such as progressive refinement and
overshooting methods, which update a single component on each iteration.

1.2 Eigenvalues Estimates

The Chebyshev method depends on eigenvalues estimates (see Appendix for relation-
ship between eigenvalues and iterative solvers). The characteristic polynomial of a square
( �R�S� ) matrix @ is given by T�UWVYX ��Z

!;[
UW@ F VL\>X , where I represents the identity matrix.

The zeros of T]U^V�X are called eigenvalues or characteristic values of the matrix @ . If_B`�7a is such that UW@ F VL\>X _ �7a holds, then v is called an eigenvector or characteristic
vector of @ corresponding to the eigenvalue V .

Usually calculating the eigenvalues of a matrix @ requires more computation than
that required to solve the corresponding linear system. However we can obtain relatively
inexpensive estimates of the eigenvalues using the Gerschgorin Circle Theorem [3]. This
theorem says that the eigenvalues of @ are contained within the union of n circles b

� �cedgfihJj0j d Fik �2� j>lBm �
�n� � j k
� 
 jpo

, where C is the complex plane. The union of any k of
these circles that do not intersect the remaining (n-k) must contain precisely k (counting
multiplicities) of the eigenvalues.

In an environment formed by planar or convex surfaces ( �
�1� �7a

) the radiosity ma-
trix has all the main diagonal entries equal to one. So the centers of the circles are also
have value one. In a closed environment (

m �
 � � �
� 
 �q*

), the radius of b
�

is given by� �
.r
We use the expression radiosity-specific methods to group methods specifically developed to
solve the radiosity problem. Although those methods can be considered variations of numerical
methods such as Southwell Iteration [7] or SOR [9], they have been particularly adjusted and
finetuned to the radiosity case.



2 The Chebyshev Method

Gauss-Seidel [7] is a linear stationary method, which implicitly updates solutions by?gs 
.t �Iu �qv ?ws 
 u � Ẽ, where
v

is an iteration matrix. Nonstationary methods have an
implicit iteration matrix

v 

which changes on each iteration. The Chebyshev method

[12] [11] [2] is a nonstationary method based on residual polynomials (see Appendix).
It is directly applicable to nonsymmetric matrices like the radiosity coefficient matrix.
However it requires estimates x and y of the smallest and largest eigenvalues, V{z}|H~ andVLz}� � , of the corresponding coefficient matrix. The iterative process is characterized by:
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where
�g� s 
 u is a correction vector,

� ? s 
 u �76�F @���? s 
 u is the residual, and
� 


andT 
 are coefficients of the residual polynomials.
To obtain fastest reduction in the residual norm a residual polynomial method needs

to select polynomials whose ordinates quickly go to zero on the spectrum of the coef-
ficient matrix @ as the degree of the polynomial increases. For radiosity problems the
eigenvalues are all real and positive, so given a knowledge of an interval [ x + y ] contain-
ing the spectrum of @ we select polynomials ��� that have their maximum absolute value
on [ x + y ] minimal over all monic polynomials (polynomials with leading coefficient 1)
of degree � . In addition to this ”minimax” property, Chebyshev polynomials can also
be computed using a three term recursion which implies that the iteration can be imple-
mented using only three additional vectors of storage (see Appendix).

Adapting the classical Stiefel iteration [12] [11], the Chebyshev algorithm in radios-
ity context becomes the following:

1 for (each � )
2 ���O������ starting guess
3 compute ��� �O��� ��������� � �O���
4 � � �;¡<¢¤£��¦¥Y§
4 ¨ �©¢¤£Gªi¥�§«¡¬¢¤£��­¥Y§
6 ® � ¨ ¡ �
7 for (each � )
8 ��� � ���� �R� � ��¯ª ®L�
� �
9 compute ��� � � � ��������� � � � �
10 ° ��±e¡¬¢¤£
ªi¥Y§ .
11 ² ��³
12 while (not converged)
13 ° �B¢ ® � �rW´<µ ° §H¶ �
14 for (each � )
15 ��· � � ° � ��� � ¸H�� ª8¢ ®:° ��³¹§ ��· �
16 � � ¸.º � �� � � � ¸H�� ª �
· �
17 compute ��� � ¸Hº � � ��� �i��� � � ¸H�
18 ² � ² ª»³

In the above algorithm V z}|I~ and V z}� � have been replaced by y and x , where
a»¼x l V0z}� � ¼ V0z}|H~ l y . The rate of convergence of Chebyshev is maximal whenx � VLz}� � and y � VLz}|H~ , and the method can even diverge if V�½G¾K¿ is underestimated byy . Therefore to implement the Chebyshev method successfully the extremal eigenval-

ues of the matrix @ must be estimated. However, since the Chebyshev polynomials grow



very rapidly if we underestimate the maximal eigenvalues, we will notice very quickly
the sudden increase of the error norm. This would allow us to immediately reset the es-
timates and proceed.

Using the Gerschgorin Disk Theorem the extremal eigenvalues may be approximated
by
*,/ aRÀ � ½Á¾¹¿ , where

� ½G¾K¿ is the highest reflectivity in the environment, which may
correspond to the reflectivity of a single patch or of a group of patches. The increase of
the highest reflectivity may not significantly change the overall reflectivity, expressed in
terms of

� |«Â¹Ã ,e.g. if only the reflectivity of few small patches is changed. In that case our
experiments show that increasing the highest reflectivity does not significantly change
the convergence. On the other hand if we increase the overall reflectivity of the envi-
ronment, e.g. high albedo scenes, then slow convergence results. Our experiments show
that using

� |«Â¹Ã instead of
� ½G¾K¿ to estimate the eigenvalues gives better results for all

the cases tested. Therefore our Chebyshev parameters are given by y ��*,/ a �»� |«Â¹Ã andx ��*,/ a�F � |�Â¹Ã in which
� |«Â¹Ã is given by:

� |�Â¹Ã � m �� � � �
�ÅÄ
�

m � � �� � �
Ä � +

(4)

where

Ä
�
is the area of patch 4 .

In all the cases tested the use of a starting guess which takes into account the am-
bient component gives better results than a starting guess which uses only the vector
of emittances. To use this starting guess we replace line 2 of the above algorithm by? sÇÆ u� ��6 � �È� �«É
ÊwË'ÌÅÍ¹ÎÐÏ

, where the ambient term is computed replacing
� ?

�
by
6 �

in
the ambient equation presented in [4].

3 Testing Parameters

We compared five algorithms, using explicitly stored form factors: Gauss-Siedel(GS),
Progressive Refinement(PR) [7], Overshooting(FEDA)[6], Conjugate Gradient(CG) [1]
and Chebyshev(CHEBY). The starting guesses were chosen in order to obtain the best
possible rate of convergence for each tested algorithm. Consequently the initial error
norm is not the same for curves on a single graph. The starting guess used for Gauss-
Siedel and Conjugate Gradient algorithms was the vector of emittances and for the
radiosity-specific methods we used a vector of zeros. For the Chebyshev algorithm we
used the starting guess which takes into account the Ambient term, i.e. ?

� �Ñ6 � �� �^É
ÊÒË¹ÌÅÍ'ÎLÏ
.

The general matrix methods check the convergence after a complete sweep of the
coefficient matrix, i.e. one iteration. The radiosity-specific methods perform this check
after one relaxation step, i.e. one step of iteration. To make our measurement uniform
we count steps of an iteration. In this context an iteration of a general matrix method
corresponds to � steps of an iteration, where � is the order of the coefficient matrix.

To measure the time we start the clock at the beginning of a cycle of � steps of an
iteration and stop it after � steps of an iteration. For the general matrix methods tested
we use � � � . We check for � at each step in order to make the timing overhead the
same for all methods. In addition all the error norms are computed outside of the tim-
ing cycles. The time measurements are given by elapsed CPU time on a SGI Challenge
(20-R4400). All the algorithms were implemented using the same software guidelines
to avoid differences that could affect the timing.



We use as our stopping criteria the largest unshot energy, i.e. the ÓÕÔ norm of the
vector with components

 �^ÄÕ�
, in which

 �
represents the residual and

ÄA�
the area of patch4 , given by: Ö Ô ��×wØeÙ�KÚ � Ú �

j  �^ÄÕ� j
(5)

If
Ö Ô is smaller than a given tolerance we stop the iterations. The value assigned to the

tolerance depends on how visually close to true solution one wants the final image be. In
general it is not necessary to use very low tolerance as in most numerical applications.
We used a tolerance equal to

*Ûa � �
, but present the full convergence histories so that the

methods can be compared for larger tolerances.
The test model used in our experiments consists of a sphere in the middle of a room.

The sphere was divided into 128 patches and the faces of the surrounding cube were
divided into 144 patches forming a total of 992 patches. The light source corresponds
to 16 patches on the center of the “ceiling” of the cube. Assigning different values for
the reflectivities varies

� ¾KÜ=Ý and changing the sphere radius,

 �9*</ a
and

 �7->/ a
, gives

different densities ( Þ ) for the coefficient matrix, 70% and 53% respectively.

4 Testing Results

Testing was performed to compare the performance of the five algorithms which are de-
scribed in detail in [1]. In particular, we examine the effect of the matrix spectrum (which
depends on the reflectivities in the scene). Numerical testing is necessary because most
theory about the convergence rates of these methods deals with asymptotic convergence.
For the low accuracy solutions needed in graphics radiosity problems, oftentimes an ad-
equate solution is available before the asymptotic convergence region is approached.

The Gauss-Seidel and CG methods are parameter-free, that is, there are no algorith-
mic parameters which must be set by the user. Chebyshev requires estimates of the small-
est and largest eigenvalues, but for this application those can be set automatically as was
done here, by using

*%À � ¾KÜ=Ý . The Feda method [6] can be fine-tuned by different choices
of the overshooting parameter, in the same way that Gauss-Seidel is generalizable to the
SOR method [9]. However, like the SOR method the optimal choice of parameters is
unknown except for a few special cases. The version tested here automatically selects
the overshooting parameter.

4.1 Steps of Iterations vs Time

Usually progressive refinement or overshooting converge in fewer steps of an iteration
than the other three methods. However, counting steps of an iteration does not account
for the differing amounts and types of work performed on each step. So a method that
converges in fewer steps of an iteration may in fact require more overall time.

The experiments show that this distinction does occur in radiosity applications.
Figure

*�ß0à�á;â
shows that for test case A with

� ¾¹Ü=Ý ��a0/p-eã progressive refinement meth-
ods converge in fewer steps of an iteration for

[��¬ä �å*;a � �
. However, Figure

*�æ � Ý¹ç â ,
showing the same convergence history as in Figure

*<ß0à�á;â
but plotted against elapsed

CPU time, shows that Gauss-Seidel and Chebyshev methods converge in less CPU time.
When the overall reflectivity of the environment is increased, the difference becomes
even more noticeable, as shown in Figure 2 for test case B with

� ¾KÜ=Ý ��a0/ ã,è .
Counter-intuitively, Gauss-Seidel and Chebyshev methods require more operations

than the radiosity-specific methods, but require less CPU time. The main reason is the



differing amounts of pipelining and data locality the algorithms allow. Note that in pro-
gressive refinement methods, we search for the patch with largest amount of unshot ra-
diosity, which involves traversing a potentially large amount of data without performing
any operations on it that decrease the residual. The general matrix methods, by contrast,
simply process each row of the matrix in order. Although this may mean processing rows
whose corresponding patch has no unshot radiosity remaining, in practice performance
is enhanced. By avoiding the search phase, the computations can be better pipelined by
compilers, and all data which is brought into the processor is actually used in improving
the solution rather than searching for the next row to handle.

Furthermore, the innermost loop of the progressive refinement and overshooting
methods consists of a saxpy (vector update of the form é � é ��ê�ë , where

ë
and é

are vectors and
ê

is a scalar) operation, which entails
ã � memory references ( � each

for reading
� 


, ìí? 
 , �
� 


, and an additional � for writing ìí? 
 ) and î<� floating point
operations (flops). By contrast the Gauss-Seidel, Chebyshev and CG methods have an
inner product as the innermost loop. For the last two methods this entails

- � memory
references and

- � floating point operations, because quantities not indexed by the in-
nermost loop are kept in registers and so do not require a memory reference. In partic-
ular, the carry-around scalar that the inner product is summed into, and the reflectivity� �

, are kept in registers. Hence the ratio of memory references to flops is 4/3 for the ra-
diosity specific solvers, while the ratio is 1 for the general matrix methods. This means
the general matrix methods better utilize data locality, getting more flops out of data in
the cache or registers before having to read or write new cache lines. Note that the bet-
ter data re-use of the general matrix methods is not a priori evident from examining the
algorithms. It is possible that in progressive refinement, only a few patches are selected
to shoot out radiosity over and over again. In that case, the data associated with those
patches would likely remain in cache, potentially giving better data locality properties.
Our experiments show that this is not the case in practice, however. Usually over 90%
the patches are selected the same number of times,

À�*
. Furthermore, the patches selected

most often are only selected a few more times than the average.
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Fig. 1. Case A ( ï¬ðKñHò ��ó<ô �'± , õ �8ö'÷�ø ) Left: steps of an iteration. Right: CPU time.
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4.2 Effects of Reflectivity

Figures 2 and 3 show the performance of the various methods as matrix density (occlu-
sion in the environment) is kept fixed at Þ �ýü î % and overall reflectivity is increased.
Figure 4 does the same for Þ �)þea

%. High reflectivities cause a larger number of in-
terreflections, causing the eigenvalues to become more spread out which in turn slows
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the convergence. Figure 5 shows the effects of the environment’s overall reflectivity in-
crease on the eigenvalue distribution. The increase of reflectivity is especially deleteri-
ous for PR. Because PR selects which patch to process on each step, it is a nonstationary
method which actually changes its innermost loop depending on the specific data of the
problem. This means it is not as amenable to analysis as the Chebyshev or CG methods,
which are expected to take more steps of an iteration as the eigenvalues get spread out.
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Fig. 5. Eigenvalue distribution as the overall reflectivity increases.

As reflectivity increases the spectral radius of the Gauss-Seidel iteration matrix ap-



proaches 1.0, and its relative performance decreases. The Gauss-Seidel method has a lin-
ear convergence rate that directly depends on the spectral radius of the iteration matrix.
The Chebyshev method also has worsening performance, but relative to Gauss-Seidel it
is not as sensitive to the increase in reflectivity. The adaptivity of the CG method makes
its relative performance better as reflectivity increases; however, as Figure 4 shows only
for the highest reflectivity and density levels tested did it become competitive with the
Chebyshev method.

Table 1 summarizes the results for the test problems, and for each test case the time
of the fastest algorithm is presented in boldface. Note that the Feda method implemented
failed on test problems E and F, which have high density and reflectivity. In general, the
Gauss-Seidel and Chebyshev methods are the fastest overall. These conclusions do not
change when using different stopping tests or the other error norms described in [1].

Methods Test Cases
A B C D E F

CG 4.68 6.60 8.63 11.02 5.05 5.80
CHEBY 1.61 2.81 4.81 6.45 4.05 5.64
FEDA 3.92 5.32 11.73 18.47 úeô ±eö º ÿ¬ô ÿ����
GS 1.20 2.01 6.43 12.83 5.23 11.26
PR 3.21 6.85 23.03 50.56 22.53 50.43

Table 1. Algorithms performance (total time in seconds). The symbols � and ª indicate failure to
converge after 2478 and 3304 steps of an iteration respectively.

5 Conclusion and Future Research

Our experiments using explicitly stored form factors have shown that although radiosity-
specific methods make rapid initial improvement, faster than any other method for lim-
ited tolerances U *Ûa � � X , they are slower than the general matrix methods for higher tol-
erances. Radiosity-specific methods require searching for a patch to shoot on each step,
which can require traversing a large data structure. The disadvantage of general matrix
methods of storing the form factors is compensated by the regularity of the computations
which allows good pipelining and data locality.

The performanceadvantages of the general matrix methods are not as attractive when
the form factors are computed on the fly, e.g. when � is large. In that case, the innermost
loop consists of computing the form factors, which generally requires more flops than
the matrix solving algorithms themselves. Avoiding even a few extra form factor compu-
tations by searching through rows for the most unshot radiosity may then give the edge
to radiosity-specific methods such as Feda’s method.

For environments with high average reflectance, which may occur in several appli-
cations, the rate of convergence is slower for all of the iterative methods used. Our exper-
iments have also shown that the CG method and the Chebyshev method, with the esti-
mates of the maximal eigenvalues described previously, represent the fastest approaches
to handle those cases.

The experiments also show that selecting the “best” method is delicate, and no sin-
gle method is superior in all cases. The relative performance depends on architectural



performance features such as pipelining and data locality as well as problem character-
istics. Developing practical solution strategies will likely require implementing a vari-
ety of linear solvers, with the one actually used chosen at runtime dependent on problem
parameters such as reflectivity and occlusion, and figuring out the best parallel imple-
mentation for shared memory multiprocessor workstations. It will also be necessary to
bring more numerical linear algebra tools to bear on the problem.

Finally we believe that the understanding of the physical meaning of the eigenvalues
and eigenvectors in the radiosity context may help us to obtain even faster approxima-
tions for the radiosities vector. Our future efforts will be focused on that question.

Appendix - Residual Polynomial Methods and Eigenvalues

A Eigenvalues and Eigenvectors

A.1 Definition and Basic Properties

An eigenvector � of a matrix @ is a nonzero vector that does not rotate when @ is applied
to it. In other words, there is some scalar constant V , an eigenvalue of @ , such that @ � �V � . Every square matrix @ of order � has � possibly nondistinct complex eigenvaluesV � + V � +'/2/1/2+ V � . When @ is symmetric the eigenvalues are real-valued. The set � UW@RX of
eigenvalues of a matrix is called its spectrum.

A.2 Relationship with Iterative Methods

Eigenvalues determine the convergence of iterative solvers used to solve linear systems
such as @A? �76

. For linear stationary methods of the form ? s 
.t �Iu �7v ? s 
 u � Ẽ, which
includes Jacobi, Gauss–Seidel, and SOR, the eigenvalues of the iteration matrix

v
are

the relevant ones. The matrix
v

is derived from the coefficient matrix @ ; for example
in the Gauss-Seidel iteration

v � U � � ÓÁX � ��� where
�

, Ó , and
�

are the diagonal,
strictly lower triangular, and strictly upper triangular parts of @ , respectively. However,
no connection need hold between the eigenvalues of

v
and those of @ . Linear stationary

methods converge if and only if
� U v X ¼�* , where

� U v X is the size of the eigenvalue with
largest magnitude. Furthermore, convergence is faster for smaller

� U v X .
For nonstationary methods such as conjugate gradients or Chebyshev, the eigenval-

ues of the coefficient matrix @ are the important ones. The Chebyshev method has con-
vergence determined by the convex hull of the spectrum of @ , which is determined by
the extreme eigenvalues. For a matrix with positive real eigenvalues the largest ( V]½Á¾¹¿ )
and smallest ( V ½

�
� ) eigenvalues completely determine convergence, which is faster for

larger values of UWV ½G¾K¿ � V ½
�
� X��%UWV ½G¾K¿ F V ½

�
� X . The Conjugate Gradient method’s con-

vergence is determined by the overall distribution of eigenvalues, and even for a given� UW@RX it is impossible to predict the exact number of an iterations CG will require. How-
ever, CG generally requires only � � *

iterations when the eigenvalues occur in only� ¼ � clusters, and has faster convergence for larger values of U^V ½G¾K¿ � V ½
�
� X	�>U^V ½Á¾¹¿ FVÐ½

�
� X .

B Residual Polynomial Methods

Most iterative solvers for linear systems can be analyzed using residual polynomials.
Consider the linear system @A? � 6

with an approximate solution ? s 
 u . An iterative



method can be seen as choosing a direction of motion
� ? s 
 u , then choosing a stepsizeê

to move in that direction:

? s 
.t �Iu � ? s 
 u � ê 
 � ? s 
 u +
( �7a0+'*,+'/;/'/

(6)

Because of the residual vector
6�F @»� ? s 
 u corresponds to the direction of steepest de-

scent, it is most commonly used for
� ? s 
 u . An iterative method can then be constructed

by choosing the stepsizes
ê 


to minimize a measure of the error in ? s � u , where � is the
number of iterations made. Recursively substituting (6) into the definition of residual
vector gives [12]: � ? s � u � � � U^@RX � ? sÇÆ u (7)� �%UWVYX � U *GF ê � � � V�X=U *ÕF ê � � � V�X�
�
�
'U *ÕF ê Æ V�X (8)

� � is called a residual polynomial; note that ���%U a X �9*
necessarily holds.

If @ is diagonalizable then @ � b � b � � where b is a nonsingular matrix and
�

is
the diagonal matrix with V � + V � +;/1/2/1+ V � on its diagonal. In this case ���%U^@RX � b � �%U � XHb � � ,
and to obtain fastest reduction in the residual norm a residual polynomial method needs
to select polynomials whose ordinates � � U^V

�
X quickly go to zero as the degree of the

polynomial increases. These ordinates give the reduction in the 4	
�� eigencomponent of
the residual after the ��
�� step of the iteration. In addition to this optimality property, a
good residual polynomial should be computed using short recursions so that only a few
of the previous residual vectors need be stored.

C Chebyshev Polynomials

The Chebyshev polynomials �e� [3] for the interval � F�*,+'*�� are defined by�;�%U���X ��������� � � ������� � � U���X � , for each ��� a . Because they are orthogonal with respect
to the weight function  RU���X � U *}F � � X � ��!H� , Chebyshev polynomials can be computed
using the three term recursion:

� Æ U��{X �9*<+ � � U���X � � + � � t � U��{X ��- �"� � F � � � �$# �%� *,/
Most importantly, Chebyshev polynomials have a minimax property: of all ��
�� –degree
polynomials with leading coefficient 1,

- � � � �;� has the smallest maximum norm in � F�*<+'*�� .
The value of its maximum norm is

- � � � . Figure 10 shows the graphs of monic Cheby-
shev polynomials of degree 3,4 and 5.

Given an interval [ x + y ] containing the eigenvalues of a matrix @ the Chebyshev
method uses residual polynomials based on monic Chebyshev polynomials shifted from
the interval [-1,1] to the interval [ x + y ], and scaled so that � �%U a X ��* . This gives:

� � U^V�X � � �'&)( t+* � ��,( � *.-
�;�'&)( t/*( � * -

/
The three term recursion can similarly be translated to the new variables, giving the
Chebyshev algorithm presented in the paper.
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Fig. 6. Monic Chebyshev polynomials.
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