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1 Introduction

Inradiosity algorithmsthe average radiance of n. Lambertian patchesis approximated by
solving alinear system with n unknowns. When n issmall (i.e. fewer than thousands of
patches), general matrix methodslike Gauss-Siedel can be used wherethe explicitn x n
matrix can be pre-computed and stored [5]. When n islarge, progressivetechniques are
used where the matrix rows or elements are recomputed as needed [4]. When n isvery
large (i.e. hundreds of thousandsof patches), stochastic techniques can avoid computing
or storing the n2 elements of the matrix [10].

In applications where n is small enough to store the entire matrix in main mem-
ory, general matrix techniqueswill befaster than progressive techniques®. For “massing
studies’ [8] thelighting can be examined on simple geometric approximationsof the en-
vironment being designed, and n can bevery small. When the color schemeand lighting
are being designed, the computationally expensive part (form factors) of the matrix in
the linear system can be reused as the material properties are changed. For these appli-
cations the fastest possible general matrix solution is desirable.

This paper examines the Chebyshev method for solving linear systems, which for
environments with high average reflectance can converge faster than the methods usu-
aly used in radiosity problems. We discuss some important characteristics of the linear
systems in radiosity applications. We also look for solution methods that converge in
small amounts of time, as opposed to a small humber of iterations. For this discussion
we assume a conventional RISC architecture, where coherent memory accessis vital.

1.1 Radiosity System of Linear Equations

For an environment divided into n patches, the total spectral radiant power leaving a
patch depends on the spectral radiant power emitted by the patch plusthe spectral radiant
power that is reflected. The spectral radiant power depends in turn on the total spectral
radiant power leaving the other patches in the environment. The following system of
equations represents the process of spectral radiant power transfer:

b, = 45;-5 +p; ZF,-jﬁ,- for each j=1,2..n (@D}

i=1

% Progressive techniques will initially converge faster because they can begin iterations before
computing the entire matrix. If general matrix techniques are modified to gradually construct
the matrix during initial iterations, then this advantage of progressive method goes away.



where:

&¢; = total spectral radiant power leaving patch j (watts/nm).

dSJE = gpectral radiant power emitted by patch j (watts/nm).

p; = reflectivity of patch j (dimensionless).

F;; = fraction of energy leaving patch ¢ hitting patch j (dimensionless).

Applying the mathematical derivation described in [1] we get the classical expres-
sionintermsof spectral radiant exitance, M, which holdsfor each patch in the environ-
ment:

n
M; = E; + p; ZF]ZMZ for each j=1,2..n (2
i=1
Radiosity, B, istheterm used for radiant exitancein the computer graphicsliterature.

Determining the radiant exitance (or radiosity) of each patch involves solving the linear
system GB = E, given by:

1=pF11 —p1F12 ... —p1F1, B E;
—p2Fo1 1= paFoy ... —paFo, B, E,
—pnFr1 —pnFn2 ... 1= ppFpy B, E,

Iterative methods used to solve the radiosity system of linear equations can be di-
vided into general matrix methods, which update all components of the solution vector
on each iteration, and radiosity-specific methods 4 such as progressive refinement and
overshooting methods, which update a single component on each iteration.

1.2 Eigenvalues Estimates

The Chebyshev method depends on eigenval ues estimates (see Appendix for relation-
ship between eigenvaluesand iterative solvers). The characteristic polynomial of asquare
(nxn)matrix G isgivenby p(A) = det(G — A1), wherel representstheidentity matrix.

The zeros of p()\) are called eigenvalues or characteristic values of the matrix G. If
v # 0issuchthat (G— AI)v = 0 holds, thenv iscalled an eigenvector or characteristic
vector of G corresponding to the eigenvalue \.

Usually calculating the eigenvalues of a matrix G' requires more computation than
that required to solvethe corresponding linear system. However we can obtainrelatively
inexpensiveestimates of theeigenvaluesusing the Gerschgorin Circle Theorem[3]. This
theorem says that the eigenvalues of G are contained within the union of n circles S; =
{z € C'| |z~ guil <3°7;19i1}, where C isthe complex plane. The union of any k of
these circlesthat do not Intersect the remaining (n-k) must contain precisely k (counting
multiplicities) of the eigenvalues.

In an environment formed by planar or convex surfaces (F;; = 0) the radiosity ma-
trix has al the main diagonal entries equal to one. So the centers of the circles are also
have value one. In a closed environment (E;’:l F;; = 1), theradiusof S; is given by
pi-

4 \We use the expression radiosity-specific methods to group methods specifically developed to
solvetheradiosity problem. Although those methods can be considered variations of numerical
methods such as Southwell Iteration [7] or SOR [9], they have been particularly adjusted and
finetuned to the radiosity case.



2 The Chebyshev Method

Gauss-Seiddl [7] is alinear stationary method, which implicitly updates solutions by
BU+Y) = TR 4 E, where T is an iteration matrix. Nonstationary methods have an
implicit iteration matrix T; which changes on each iteration. The Chebyshev method
[12] [11] [2] is a nonstationary method based on residual polynomials (see Appendix).
It is directly applicable to nonsymmetric matrices like the radiosity coefficient matrix.
However it requires estimates i, and v of the smallest and largest eigenvalues, Aiax and
Amin, Of the corresponding coefficient matrix. Theiterative processis characterized by:

BU+Y — Bl 4 ApW) AD) — qul(AB(j) +ijD(j_1)) (3)

where ADW) isacorrection vector, ABY) = E — G + BY) istheresidual, and ¢; and
p; are coefficients of the residual polynomials.

To obtain fastest reduction in the residual norm aresidual polynomial method needs
to select polynomials whose ordinates quickly go to zero on the spectrum of the coef-
ficient matrix G as the degree of the polynomial increases. For radiosity problemsthe
eigenvaluesareall real and positive, so given aknowledge of aninterval [, v] contain-
ing the spectrum of G we select polynomials Py, that have their maximum absolutevalue
on [, v] minimal over all monic polynomials (polynomials with leading coefficient 1)
of degree k. In addition to this "minimax” property, Chebyshev polynomials can also
be computed using a three term recursion which impliesthat the iteration can beimple-
mented using only three additional vectors of storage (see Appendix).

Adapting the classical Stiefel iteration [12] [11], the Chebyshev algorithmin radios-
ity context becomes the following:

1 for (each7)

2 B®) = starting guess

3 compute AB® = E — G « B©®

4 a=2/(v—p)

4 B=w+p)/lv—p

6 v = B/a

7 for (each )

8 B" = B 4+ yAB;

9 compute ABY — E_ G« BW

10 w=4/(v+ p).

11 j=1

12 while (not converged)

13 w=(y— égw)_l

14 for (each 1)

15 AD; = wx ABY) + (yw — 1)AD;
16 BYtY = BY) + AD;

17 compute ABUTYD = E — G « BYW
18 j=j+1

In the above algorithm A ax and A, have been replaced by » and i, where 0 <
L < Admin < Amax < v. Therate of convergence of Chebyshev is maximal when
I = Amin ad v = Apax, and themethod can even divergeif A4, iSunderestimated by
v. Therefore to implement the Chebyshev method successfully the extremal eigenval-
uesof thematrix G must be estimated. However, sincethe Chebyshev polynomia sgrow



very rapidly if we underestimate the maximal eigenvalues, we will notice very quickly
the sudden increase of the error norm. Thiswould alow usto immediately reset the es-
timates and proceed.

Using the Gerschgorin Disk Theoremthe extremal el genvaluesmay be approximated
by 1.0 £+ pinas, Where p,,q. 1S the highest reflectivity in the environment, which may
correspond to the reflectivity of asingle patch or of agroup of patches. The increase of
the highest reflectivity may not significantly changethe overall reflectivity, expressedin
termsof payg,e.0. if only thereflectivity of few small patchesischanged. Inthat case our
experiments show that increasing the highest reflectivity does not significantly change
the convergence. On the other hand if we increase the overall reflectivity of the envi-
ronment, e.g. high albedo scenes, then slow convergenceresults. Our experiments show
that using pavg instead of p,q. t0 estimate the eigenval ues gives better results for all
the cases tested. Therefore our Chebyshev parametersare given by v = 1.0 4 pa.; and
= 1.0 — payg inWhich p,,, isgiven by:

_ E?:l piAz'
Pavg = “—imm

; (4)
i=1 Al
where A; isthe area of patch 4.

In al the cases tested the use of a starting guess which takes into account the am-
bient component gives better results than a starting guess which uses only the vector
of emittances. To use this starting guess we replace line 2 of the above algorithm by
BEO) = E; + p; Ambient, where the ambient term is computed replacing AB; by E; in
the ambient equation presented in [4].

3 Testing Parameters

We compared five algorithms, using explicitly stored form factors: Gauss-Siedel (GS),
Progressive Refinement(PR) [ 7], Overshooting(FEDA) [ 6], Conjugate Gradient(CG) [ 1]
and Chebyshev(CHEBY). The starting guesses were chosen in order to obtain the best
possible rate of convergence for each tested algorithm. Consequently the initial error
norm is not the same for curves on a single graph. The starting guess used for Gauss-
Siedel and Conjugate Gradient algorithms was the vector of emittances and for the
radiosity-specific methods we used a vector of zeros. For the Chebyshev algorithm we
used the starting guess which takes into account the Ambient term, i.e. B; = E; +
pi Ambient.

The general matrix methods check the convergence after a complete sweep of the
coefficient matrix, i.e. one iteration. The radiosity-specific methods perform this check
after one relaxation step, i.e. one step of iteration. To make our measurement uniform
we count steps of an iteration. In this context an iteration of a general matrix method
correspondsto n steps of an iteration, wheren is the order of the coefficient matrix.

To measure the time we start the clock at the beginning of a cycle of & steps of an
iteration and stop it after & steps of an iteration. For the general matrix methods tested
we use k = n. We check for & at each step in order to make the timing overhead the
same for al methods. In addition all the error norms are computed outside of the tim-
ing cycles. The time measurements are given by elapsed CPU time on a SGI Challenge
(20-R4400). All the algorithms were implemented using the same software guidelines
to avoid differencesthat could affect the timing.



We use as our stopping criteria the largest unshot energy, i.e. the L, norm of the
vector with componentsr; A;, inwhichr; representstheresidual and A; theareaof patch
i, given by:

oo = lréliagxn |'rzAz| ©)
If £, issmaller than a given tolerance we stop the iterations. The value assigned to the
tolerance depends on how visually closeto true solution one wantsthefinal imagebe. In
general it is not necessary to use very low tolerance as in most numerical applications.
We used atolerance equal to 10~2, but present the full convergence histories so that the
methods can be compared for larger tolerances.

Thetest model used in our experiments consists of a spherein the middle of aroom.
The sphere was divided into 128 patches and the faces of the surrounding cube were
divided into 144 patches forming a total of 992 patches. The light source corresponds
to 16 patches on the center of the “ceiling” of the cube. Assigning different values for
thereflectivities varies p,.,, and changing the sphereradius, » = 1.0 and r = 2.0, gives
different densities (6) for the coefficient matrix, 70% and 53% respectively.

4 Testing Results

Testing was performed to compare the performance of the five algorithmswhich are de-
scribedindetail in[1]. Inparticular, we examinethe effect of the matrix spectrum (which
depends on the reflectivities in the scene). Numerical testing is necessary because most
theory about the convergencerates of these methods deal swith asymptotic convergence.
For the low accuracy solutions needed in graphicsradiosity problems, oftentimes an ad-
equate solution is available before the asymptotic convergence region is approached.

The Gauss-Seidel and CG methods are parameter-free, that is, there are no algorith-
mic parameterswhich must be set by the user. Chebyshev requiresestimates of the small-
est and largest eigenvalues, but for this application those can be set automatically aswas
donehere, by using 1+ p,,,4. The Fedamethod [6] can befine-tuned by different choices
of the overshooting parameter, in the same way that Gauss-Seidel is generalizableto the
SOR method [9]. However, like the SOR method the optimal choice of parametersis
unknown except for a few special cases. The version tested here automatically selects
the overshooting parameter.

4.1 Stepsof Iterationsvs Time

Usually progressive refinement or overshooting converge in fewer steps of an iteration
than the other three methods. However, counting steps of an iteration does not account
for the differing amounts and types of work performed on each step. So a method that
convergesin fewer steps of an iteration may in fact require more overall time.

The experiments show that this distinction does occur in radiosity applications.
Figure1r.z; showsthat for test case A with p,,, = 0.24 progressive refinement meth-
ods converge in fewer steps of an iteration for tol = 10~2. However, Figure 1 Right
showing the same convergence history as in Figure 1.5, but plotted against elapsed
CPU time, showsthat Gauss-Seidel and Chebyshev methodsconvergeinless CPU time.
When the overal reflectivity of the environment is increased, the difference becomes
even more noticeable, as shown in Figure 2 for test case B with p,,y = 0.46.

Counter-intuitively, Gauss-Seidel and Chebyshev methods require more operations
than the radiosity-specific methods, but require less CPU time. The main reason is the



differing amounts of pipelining and datalocality the algorithms allow. Note that in pro-
gressive refinement methods, we search for the patch with largest amount of unshot ra-
diosity, which involvestraversing a potentially large amount of datawithout performing
any operationson it that decrease the residual . The general matrix methods, by contrast,
simply processeach row of thematrix in order. Although thismay mean processing rows
whose corresponding patch has no unshot radiosity remaining, in practice performance
is enhanced. By avoiding the search phase, the computations can be better pipelined by
compilers, and all datawhich isbrought into the processor isactually used inimproving
the solution rather than searching for the next row to handle.

Furthermore, the innermost loop of the progressive refinement and overshooting
methods consists of a saxpy (vector update of theformy = y + ax, wherex and y
are vectors and « is a scalar) operation, which entails 4n memory references (n each
for reading p;, AB;, Fj;, and an additional n for writing A B;) and 3n floating point
operations (flops). By contrast the Gauss-Seidel, Chebyshev and CG methods have an
inner product as the innermost loop. For the last two methods this entails 2n. memory
references and 2n floating point operations, because quantities not indexed by the in-
nermost loop are kept in registers and so do not require a memory reference. In partic-
ular, the carry-around scalar that the inner product is summed into, and the reflectivity
pi, arekept in registers. Hence the ratio of memory referencesto flopsis 4/3 for the ra-
diosity specific solvers, while theratio is 1 for the general matrix methods. This means
the general matrix methods better utilize data locality, getting more flops out of datain
the cache or registers before having to read or write new cache lines. Note that the bet-
ter data re-use of the general matrix methodsisnot a priori evident from examining the
algorithms. It is possible that in progressive refinement, only afew patches are selected
to shoot out radiosity over and over again. In that case, the data associated with those
patches would likely remain in cache, potentially giving better data locality properties.
Our experiments show that thisis not the case in practice, however. Usually over 90%
the patchesare sel ected the same number of times, 1. Furthermore, the patches sel ected
most often are only selected a few more times than the average.
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4.2 Effectsof Reflectivity

Figures 2 and 3 show the performance of the various methods as matrix density (occlu-
sion in the environment) is kept fixed at § = 53% and overall reflectivity is increased.
Figure 4 does the same for § = 70%. High reflectivities cause a larger number of in-
terreflections, causing the eigenval ues to become more spread out which in turn ows
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the convergence. Figure 5 shows the effects of the environment’soverall reflectivity in-
crease on the eigenvalue distribution. The increase of reflectivity is especially deleteri-
ousfor PR. Because PR selects which patch to process on each step, it isanonstationary
method which actually changesitsinnermost loop depending on the specific data of the
problem. This meansit is not as amenable to analysis as the Chebyshev or CG methods,
which are expected to take more steps of an iteration as the eigenvalues get spread out.

Avg. Reflectivity = 0.24, Min. Eigenvalue = 0.7049, Max. Eigenvalue = 1.156
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Fig. 5. Eigenvalue distribution as the overall reflectivity increases.

As reflectivity increases the spectral radius of the Gauss-Seidel iteration matrix ap-



proaches 1.0, anditsrelative performancedecreases. The Gauss-Seidel method hasalin-
ear convergencerate that directly depends on the spectral radius of the iteration matrix.
The Chebyshev method al so has worsening performance, but relative to Gauss-Seiddl it
isnot as sensitive to theincrease in reflectivity. The adaptivity of the CG method makes
itsrelative performancebetter asreflectivity increases; however, as Figure 4 shows only
for the highest reflectivity and density levels tested did it become competitive with the
Chebyshev method.

Table 1 summarizesthe results for the test problems, and for each test case thetime
of thefastest algorithmis presented in bol df ace. Note that the Fedamethod implemented
failed on test problems E and F, which have high density and reflectivity. In general, the
Gauss-Seidel and Chebyshev methods are the fastest overall. These conclusions do not
change when using different stopping tests or the other error norms described in [1].

Methods Test Cases

A B C D E F
CG 4686.60863 11.02505 580
CHEBY 1.612.814.81 645 4.05 5.64
FEDA 3.925.3211.73 18.47 7.457 9.92*
GS 120201643 12.83523 11.26
PR 3.21 6.85 23.03 50.56 22.53 50.43

Table 1. Algorithms performance (total timein seconds). The symbols x and + indicate failure to
converge after 2478 and 3304 steps of an iteration respectively.

5 Conclusion and Future Research

Our experimentsusing explicitly stored formfactorshave shown that although radiosity-
specific methods make rapid initial improvement, faster than any other method for lim-
ited tolerances (10~1), they are slower than the general matrix methods for higher tol-
erances. Radiosity-specific methods require searching for a patch to shoot on each step,
which can require traversing a large data structure. The disadvantage of general matrix
methods of storing the form factorsiscompensated by the regularity of the computations
which allows good pipelining and data locality.

Theperformanceadvantagesof the general matrix methodsare not as attractivewhen
theform factorsare computed on thefly, e.g. whenn islarge. In that case, theinnermost
loop consists of computing the form factors, which generally requires more flops than
the matrix solving algorithmsthemsel ves. Avoiding even afew extraform factor compu-
tations by searching through rows for the most unshot radiosity may then give the edge
to radiosity-specific methods such as Feda's method.

For environmentswith high average reflectance, which may occur in several appli-
cations, therate of convergenceisslower for al of theiterative methodsused. Our exper-
iments have also shown that the CG method and the Chebyshev method, with the esti-
mates of the maximal elgenvaluesdescribed previoudly, represent the fastest approaches
to handle those cases.

The experiments also show that selecting the “best” method is delicate, and no sin-
gle method is superior in al cases. The relative performance depends on architectural



performance features such as pipelining and data locality as well as problem character-
istics. Developing practical solution strategies will likely require implementing a vari-
ety of linear solvers, with the one actually used chosen at runtime dependent on problem
parameters such as reflectivity and occlusion, and figuring out the best parallel imple-
mentation for shared memory multiprocessor workstations. It will also be necessary to
bring more numerical linear algebratools to bear on the problem.

Finally we believethat the understanding of the physical meaning of the eigenvalues
and eigenvectorsin the radiosity context may help usto obtain even faster approxima-
tionsfor the radiosities vector. Our future effortswill be focused on that question.

Appendix - Residual Polynomial Methods and Eigenvalues

A Eigenvalues and Eigenvectors

A.1 Definition and Basic Properties

An eigenvector v of amatrix G' isanonzero vector that doesnot rotatewhen G isapplied
toit. In other words, thereis some scalar constant A, an eigenvalue of G, suchthat Gv =
Av. Every square matrix G of order n has n possibly nondistinct complex eigenvalues
A1, A2, .., An. When G is symmetric the eigenvalues are real-valued. The set o(G) of
eigenvalues of amatrix is called its spectrum.

A.2 Relationship with Iterative Methods

Eigenvalues determine the convergence of iterative solversused to solve linear systems
suchasGB = E. For linear stationary methodsof theform B(i+1) = T B() 4+ E, which
includes Jacobi, Gauss-Seidel, and SOR, the eigenvalues of the iteration matrix 7" are
the relevant ones. The matrix T is derived from the coefficient matrix G; for example
in the Gauss-Seiddl iteration T = (D + L)~'U where D, L, and U are the diagonal,
strictly lower triangular, and strictly upper triangular parts of G, respectively. However,
no connection need hold between the eigenvaluesof T and those of G. Linear stationary
methods convergeif and only if p(T") < 1, where p(T') isthe size of the eigenvaluewith
largest magnitude. Furthermore, convergenceis faster for smaller p(T').

For nonstationary methods such as conjugate gradients or Chebyshev, the eigenval-
ues of the coefficient matrix G are the important ones. The Chebyshev method has con-
vergence determined by the convex hull of the spectrum of G, which is determined by
the extreme eigenvalues. For amatrix with positive real eigenvaluesthe largest (Aq4z2)
and smallest (A,:,) eigenvalues completely determine convergence, which isfaster for
larger valuesof (Amaz + Amin)/(Amaz — Amin ). The Conjugate Gradient method’s con-
vergenceis determined by the overall distribution of eigenvalues, and even for agiven
o (@) itisimpossible to predict the exact number of an iterations CG will require. How-
ever, CG generally requires only s + 1 iterations when the eigenvalues occur in only
s < n clusters, and hasfaster convergencefor larger values of (Apmaz + Amin)/ (Amaz —

)\min)-

B Residual Polynomial Methods

Most iterative solvers for linear systems can be analyzed using residual polynomials.
Consider the linear system GB = E with an approximate solution B(Y). An iterative



method can be seen as choosing a direction of motion AB(), then choosing a stepsize
a to movein that direction:

BU+Y = BU) 4 o;ABY | j=0,1,... (6)

Because of theresidual vector E — G s B(Y) correspondsto the direction of steepest de-
scent, it ismost commonly used for ABU). An iterative method can then be constructed
by choosing the stepsizes «; to minimize a measure of the error in B®), wherek isthe
number of iterations made. Recursively substituting (6) into the definition of residual

vector gives[12]:

AB® = P(G)AB©® @
Pe(A) = (1 — a1 A)(1 — ap_a)) -~ (1 — ap)) (8)

P, iscalled aresidua polynomial; notethat Py, (0) = 1 necessarily holds.

If G isdiagonalizablethen G = SDS~! where S isanonsingular matrix and D is
thediagonal matrix with A1, Az, ..., A, onitsdiagond. Inthiscase P, (G) = SPy(D)S !,
and to obtain fastest reduction in the residual norm aresidual polynomial method needs
to select polynomials whose ordinates Py, (\;) quickly go to zero as the degree of the
polynomial increases. These ordinates give the reduction in the i** eigencomponent of
the residual after the k" step of the iteration. In addition to this optimality property, a
good residual polynomial should be computed using short recursions so that only afew
of the previousresidual vectors need be stored.

C Chebyshev Polynomials

The Chebyshev polynomiads 7, [3] for the interval [—1,1] are defined by
7i(2) = cosh[k cosh™" (z)], for each k > 0. Because they are orthogonal with respect
to theweight function w(z) = (1 — z*)~'/2, Chebyshev polynomials can be computed
using the three term recursion:

To(z) =1, 1 (x) =, Tee1(x) =207 — TH_1; k> 1.

Most importantly, Chebyshev polynomials have a minimax property: of all kt*—degree
polynomialswith leading coefficient 1, 2! %7, hasthe smallest maximumnormin [—1, 1].
The value of its maximum normis 2' ~*. Figure 10 shows the graphs of monic Cheby-
shev polynomials of degree 3,4 and 5.

Given an interval [u, ] containing the eigenvalues of a matrix G' the Chebyshev
method usesresidual polynomialsbased on monic Chebyshev polynomialsshifted from
theinterval [-1,1] to theinterval [p, v], and scaled so that Py (0) = 1. Thisgives:

()
Pp(A) = - (ZJ_F—Z)

The three term recursion can similarly be trandated to the new variables, giving the
Chebyshev agorithm presented in the paper.



—— degree 3
degree 4
- - degree 5

-0.05[

-0.1f

-0.15f

02 L L L L L L L L L
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Fig. 6. Monic Chebyshev polynomials.

Acknowledgements

The work reported in this paper was supported in part by the Conselho Nacional de Pesquisas
(CNPq, Brasil) and by NSF (Grant CDA 93-03189, USA).

References

1

10.

12.

G. V. BARANOSKI, R. BRAMLEY, AND P. SHIRLEY, Iterative methods for fast radiosity
solutions, tech. rep., Indiana University, 1995.

R. BARRETT ET AL., Templates for the Solution of Linear Systems: Building Blocks for It-
erative Methods, SIAM, Philadelphia, 1 ed., 1994.

R. BURDEN AND J. FAIRES, Numerical Analysis, PWS-KENT Publishing Company,
Boston, 5 ed., 1993.

M. COHEN, S. CHEN, J. WALLACE, AND D. GREENBERG, A progressive refinement ap-
proach to fast radiosity image generation, Computer Graphics, 22 (1988), pp. 75-84.

M. COHEN AND D. GREENBERG, The hemi-cube: A radiosity solution for complex envi-
ronments, Computer Graphics, 19 (1985), pp. 31-40.

M. FEDA AND W. PURGATHOFER, Accelerating radiosity by overshooting, in Proc. of the
Third Eurographics Rendering Workshop, Consolidation Express, June 1992, pp. 21-32.
S. GOERTLER, M. COHEN, AND P. SLUSALLEK, Radiosity and relaxation methods, |EEE
Computer Graphics and Applications, 14 (1994), pp. 48-58.

D. GREENBERG, Computers and architecture, Scientific American, 264 (1991), pp. 104—
109.

L. HAGEMAN AND D. YOUNG, Applied Iterative Methods, Academic Press, New York,
1981.

L. NEUMANN, New efficient algorithms with positive definite radiosity matrix, in Proc. of
the Fifth Eurographics Rendering Workshop, June 1994, pp. 219-237.

Y. SAAD, A. SAMEH, AND P.SAYLOR, Solving eliptic difference equations on a lin-
ear array of processors, SIAM Journal of Scientific and Statistica Computing, 6 (1985),
pp- 1049-1063.

E. STIEFEL, Kernd polynomialsin linear algebra and their numerical application, in Fur-
ther Contributions to the Solutions of Simultaneous Linear Equations and the Determination
of Eigenvalues, National Bureau of Standards, Applied Mathematical Series- 49, 1958.



