Editorial

Foreword to the special section on SIBGRAPI 2021

SIBGRAPI (Conference on Graphics, Patterns and Images) is an international event annually supported by the Brazilian Computer Society (SBC) and one of the most well-known Brazilian scientific conferences in the Computer Science field. It is attended by researchers, developers, and students from colleges, universities, research centers, and companies, uniting participants from Brazil and abroad.

The 34th edition of SIBGRAPI was planned to be held in the beautiful city of Gramado, Rio Grande do Sul, Brazil. Due to the COVID-19 pandemic, the conference was virtual from October 18th through 22nd, 2021. Fig. 1 shows the conference logo. Moreover, SIBGRAPI 2021 occurred in conjunction with two other major events: the Symposium on Virtual and Augmented Reality (SVR 2021) and the Symposium on Computer Games and Digital Entertainment (SBGames 2021).

SIBGRAPI 2021 featured an outstanding technical program, including 51 full papers published in the conference proceedings by IEEE Computer Society Press (since 1997) and available in IEEE Xplore Digital Library. Furthermore, the conference also selected papers published in special sections of the IEEE Geoscience and Remote Sensing Letters (IEEE GRSL), Pattern Recognition Letters, and Computers & Graphics journal.

The papers presented in this special section were previously submitted to the special track on SIBGRAPI 2021 for the Computers & Graphics. This year, we had 33 pre-conference submissions, and only eight papers have been accepted for publication, resulting in an acceptance rate of 24%. To ensure the high-quality standards of the journal, each paper underwent two cycles of double-blind reviewing and it was reviewed by at least three members of the Program Committee formed by well-renowned researchers.

Besides, the authors of the two best papers on graphics and visualization of the SIBGRAPI 2021 Main Track were invited to revise and substantially extend their papers to publish in this special section. These extended versions underwent the same rigorous review process of pre-conference submissions, where each paper was reviewed by four members of the Program Committee.

The ten outstanding papers selected in this special section provide remarkable results in Visualization and Computer Graphics fields, tackling the following topics:

Learning in Graphics. Figueiredo et al. [1] introduce a deep learning-based framework for shape instance registration of complex 3D CAD models. Their method employs the PointNet++ neural network to precisely identify similar instances of triangle meshes to determine an optimal affine transformation between them. Dorta Marques et al. [2] present a real-time lighting model for mixed reality applications applying a novel deep neural network architecture to represent spatially-varying environments lighting from a single image of the scene.

Shadows and Fluids. Mesquita et al. [3] provide an efficient shadow mapping algorithm that delivers good performance and a low memory footprint. Their geometrical framework allows the real-time generation of shadows in complex scenarios, removing the hidden geometry that does not contribute to the shadow rendering. Parreiras et al. [4] introduce a framework for anisotropic particle-in-cell fluid simulation based on the Fluid-Implicit-Particle (FLIP) method. The authors propose a novel numerical scheme based on Marker-and-Cell grids to perform an anisotropic pressure projection solver and a tensor-based advection as well.

Dimensionality Reduction. Marcilio Jr et al. [7] introduce a novel visual metaphor to explore Dimensionality Reduction (DR) results represented by scatterplots and understand clusters’ formation using contrastive analysis. The authors use a bipartite graph to represent statistical relationships in order to interpret the formation of the cluster regarding the data features. Neves et al. [8] present a novel incremental DR technique for streaming data applications. The technique’s efficiency results from a multidimensional re-projection scheme to update visual data representation without requiring to revisit the input data.

Ball Trees and Visual Analytics. Retondaro and Esperança [9] propose an efficient and optimized data structure of ball trees for the interactive creation of 2D layouts. Pocco et al. [10] introduce a novel visual analytic framework for exploring scientific literature collections, combining tools from image retrieval to word clouds. These two papers were selected as the best papers of the SIBGRAPI 2021 Main Track.

This year, the conference gathered 62 articles presented orally, divided into 11 thematic sessions. Four distinguished keynote speakers enhanced the SIBGRAPI 2021 program: Cláudio Rosito Jung (UFRGS, Brazil) introduced “Beyond Horizontal Bounding Boxes for Object Detection”; Gladimir Baranoski (U. of Waterloo, Canada) presented “The Quest for Fundamental Biophysical Data”;
Afonso Paiva and Gladimir Baranoski

Computers & Graphics 103 (2022) A10–A11

The SIBGRAPI 2021 Program Chairs:

Afonso Paiva ICMC-USP, Brazil
david-menotti@ufpr.br

Gladimir Baranoski University of Waterloo, Canada
givalbran@uwaterloo.ca

Hugo Proença University of Beira Interior, Portugal

References

Afonso Paiva is an Associate Professor at the Institute of Mathematics and Computer Sciences from the University of São Paulo (ICMC-USP), São Carlos, Brazil. He holds a Ph.D. (2007) in Applied Mathematics from Pontifical Catholic University of Rio de Janeiro and an M.Sc. degree (2003) in Mathematics from National Institute for Pure and Applied Mathematics (IMPA), Rio de Janeiro, Brazil. He is currently a member of the GIVALab (Graphics, Imaging, Visualization and Analytics) at ICMC-USP, and his research interests comprise computer animation, geometry processing, geometric modeling and numerical methods in computer graphics.

Gladimir Baranoski received his doctoral degree in computer science from the University of Calgary (Canada) in 1998. He is currently a Professor of the School of Computer Science at the University of Waterloo (Canada), where he has established the Natural Phenomena Simulation Group (NPSG). His research interests include primarily the predictive simulation of light interactions with natural materials. As the leader of NPSG, he has been actively participating in the development of a wide range of hyperspectral light interaction models aimed at interdisciplinary investigations. The results of his research have been disseminated in well-known venues of different fields, including computer graphics, remote sensing, and biomedical optics. He has also organized conference courses and published books related to his research work.

Afonso Paiva ICMC-USP, São Carlos, Brazil
E-mail address: apneto@icmc.usp.br.

Gladimir Baranoski
University of Waterloo, Waterloo, Canada
E-mail address: gvybaran@uwwaterloo.ca.

8 February 2022
Available online 14 February 2022

* Corresponding editor.