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Abstract

The parametric differential method calculates the form factors without using approximations by polygons.
Because of thisit contributesto the improvement of the realism of theimages synthesi sed through the radiosity
method. This paper presents the most important characteristics of the parametric differential method as well
asthe results concerning itsaccuracy. Comparison of the formfactorsfound using the new algorithmhas been
made with those anal ytically found.
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1. Introduction

The parametric differential method, and henceforth referred to as the PDM, has as its main aim to alow
the application of the radiosity method to the image synthesis of objects formed by curved surfaces without
achieving approximationsby polygons. Thisisitsmain characteristic and no such algorithm has been reported
in the literatureto date.

The PDM computes the form factors between surfaces taking into account their parametric descriptions.
The surfaces are divided into patches in order to increase the accuracy of the form factors and to provide more
accurate radiosities for sectors of the surfaces. Regarding curved surfaces, the division into curved patches,
instead of polygons, allows a more accurate representation.

The calculation of form factors between finite surfaces involves the resolution of double area integrals.
The PDM, like other methods of form factors calculation, solve these integrals using a numerica integration
method. The main difference between the PDM and the usual methods resides in the transformation of the
mathematical expression of the form factorsin order to make it more general.

Its terms are expressed in a vector form and take into account the parametric variables used to describe
the surfaces. The integrals are evaluated along the limits of the parametric variables without performing
approximations of curved contours through the use of line segments.

In addition, the occlusion testing performed by PDM includes curvature tests which consider the vector
characteristics of the calculation of the form factors. These tests influence directly the accuracy of the results
and allow areduction of the number of operations executed during the evaluation of the form factors.

2. Fundamental Concepts
2.1. Expression of the Parametric Area Differential

Using the concepts of the vector field theory [1], suppose that a surface S, described in a three dimensiona
space, 3, can be parametrized by a continuoudly differentiable function g(t,s):



RZ :g> R3 (1)

Thefunction g(t,s) can be written in the following form:
z = g1(t, s)
g(t,s) = | y=ga(t,s) )
= ¢

where the parameters t and s belong to some set D in 22 .
Itisknown that a each point g(t,s) in S the tangent vectors are defined through vector partial derivatives:
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and these vectors are linearly independent.
Then the normal vector at a point g(t,s) on asurface S can be expressed by the cross product of the tangent
vectors:

- _Og(t,s)  0Og(t,s)
i(t,s) = 5 X s 4
Theareaof thesurface Sisusually cal culated through theintegrationover S of an areadifferential, composed

by cartesian variables:
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Areaof S = /dA (5)

However, the area of S can aso be determined through the integration along D of an area differential,
composed by the parametric variablest and s. From analytical geometry it isknown that the length of the cross
product between two vectorsa and b correspondsto the area of the parallelogram formed by @ and b. Applying
this concept to the expression (4) leads to the following equation:
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Thus, if |7 | is obtained at the pointsg(x, sx) corresponding to nodes (¢, i) of agrid over D, the area of
S can be expressed as:

Area of S:/ |7i| dsdy (7)
D

Comparing the expression (7) with the expression (5) and using the limits of the parametric variablest and
sin D asintegration limits, the following expression for the parametric area differential results:

dAparametrz’c = |ﬁ| d.sdt (8)

Another way to explain the equation above is using the concept of jacobian determinant of the mapping
fromD to R3[2].



2.2. Form Factor between two Finite Parametric Surfaces

The expression of the form factor between two finite surfaces, A; and A, isgiven by:
1 COSw; COSwrp
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Taking into account that the two surfaces are described by parametric variables, the form factor F1_; is
calculated using the geometry sketched in Figure 1.
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t,s = parametric variables that describe the surface A;.
0,6 = parametric variablesthat describe the surface A».
n1 = normal vector to surface A; in apoint Pi(t, s).
iz = normal vector to surface A, in apoint Pa(4, ¢).
€12 = visibility vector from P; to P..

én = visibility vector from P, to Pi.

a1 = anglebetween 71 and €1,.

az = anglebetween 7, and &2;.

L = distance between P; and P..

Figure 1: Geometry of the form factor between two finite parametric surfaces.
From analytical geometry it isknown that the cosine of an angle « between two vectors a and bis given by
the dot product of these vectors. Thus, the cosines of o1 and «, are given by:
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The expression (8) leads to the following expressions for the area differentials d A, and d A»:
dAy = |fia| ded;,  and  dAz = 2| dydy (11)

Similarly, using the expression (7), the following equationsfor the areas A1 and A, are obtained:

Al://lﬁll dsdt and Az://|7_i2| d¢d9 (12)
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After replacing the expressions (10) to (12) into expression (9) and expressing the integration between the
limits of the parametric variables, the equation of the form factor becomes:
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Itisknown that the distance L correspondsto the modul e of the vector €1,, which has the same val ue of the
module of the vector €51:

= |€12] = |é2] (14

Thus, after performing the substitutions and simplifications in the equation (13), the equation that defines
the form factor between two finite parametric surfacesis expressed as:

T ), [l dedy |n1| d.d; / / / e 612) P22 ddd (15)

In order to calculate the numerical value of F;_», the latter expression is evaluated using the numerical
integration method known as Gaussian quadrature [3-4]. This method consists, basically, of solving the
integral s by changing them into summations. Considering the surfaces are divided into patches, the summation
corresponding to the form factor between two patchesa and b is given by:
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where:
A, = area of patch a.
Fsinty 60,6,) = Uefaalfpdeal

|eab|

Gaussian weight coefficients.
number of Gaussian points.

Wi, Wy, Wk, Wr

p

The functionf is evaluated applying the vectors 7 and " at sample points distributed over the patches. The
coordinates of these sample points are given through the parametric equations that describe the surfaces. The
number of evaluations of the function f, i.e. the number of the terms of the summation, correspondsto p* and
the number of sample pointsfor each patch corresponds to p?.

3. Occlusion Testing

The parametric differential method alows the calculation of form factors between two surfaces. If thereisan
obstacle between them some points of a surface are not visible from points of the other. In this case, as the
numerical integration corresponding to the form factors equation consistsin the evaluation of a summation, the
terms of thissummation that correspond to the pointsof a surface not visiblefrom pointsof another surface have
not to be computed. This procedureis directly associated with the accuracy of PDM and avoids the execution
of unnecessary calculations.

The approach used to determine occlusion issimilar to the ray-tracing technique used by Wallace et al. [5].
Instead of shooting rays from the vertices of polygons as the latter technique does, lines are used to connect
sample points of a patch to sample pointsof another patch. These sample points are the same as those used in
the numerical evaluation of the expression (16).

The occlusion testing is essentially the verification of whether or not there isan intersection between aline
L, which connectstwo sample points P, and P, and an obstacle between the patches. If thereisan intersection,



the sample point P, of the patch ais not visiblefrom the sample point P, of the patch b and vice-versa. Inthis
case, the term corresponding to the pair P, P, must not be added to the summation concerning the form factor
between the patch a and the patch b. This means that the function f(t,s,¢,0) (expression (16)) is not evaluated
to the pair of sample points P, and P.

Even if there is no intersection with the obstacle the term corresponding to P, and P, may be discarded
due to the possibility of curvature of one or both patches. In this case another test should be applied to verify
the visibility condition between the points P, and P;. Since these tests are associated with the curvature, the
techniqueiscalled curvature testing.

3.1. Curvature Testing between a Curved Surface and a Plane Surface

Consider aplane surface A; and a curved surface A;. In order to obtain the form factor 7, the pointsof A,
that are not visible by the points of A; should be discarded.

The curvature testing between two points P; and P, that belong to the surfaces A; and A, respectively,
consists of the dot product of the vectors i, and é21. The vector 7, corresponds to the normal at a point
P, of the surface A,. The vector é; corresponds to the visibility vector from the point P, to the point P;.
The coordinates of the points P; and P,, which are used in the expression of 7 and ¢, are given through the
parametric equations which describe the surfaces considering the limits of the parametric variables and the
number of Gaussian points used in the numerical evaluation of theintegrals.

Az A

Figure2: Visihility of apoint of the surface A, from a point of the surface A;: @) visibleb) not visible.

If the dot product is positiveit means that the angle o between the two vectors isin the range of 0° to 90°,
and the point P, is visible from the point P; (Figure 2a). Otherwise, if the dot product is negative, it means
that the angle o between the two vectors isin the range of 90° to 180°, and the point P, is not visiblefrom the
point P; (Figure 2b). In thefirst case the term of the summation corresponding to P1 P, must be evaluated. In
the second case it must not be eval uated.

The tests shall be accomplished considering the visibility of the points of the curved surface A, from the
points of the plane surface A;. If just one dot product is used to determine the visibility the dot product at the
point which belongs to the curved surface shall be calculated. Figure 3 illustrates a situation where the dot
product is calculated at the point that belongsto the plane surface. In this case the dot product between 7i; and
€10 ispositive and the angle « isin the range of 0° and 90° , but P; isnot visiblefrom P,.

In order to obtain the form factor F,_1, from the curved surface to the plane surface, F;_» is calculated
first. Then, using the reciprocity relationship of the form factors[6], F>_1 is determined.

Another way to determinevisibility between the points P; and P, in Figure3, independently of thedirection
of visibility, isto perform the calculation of the two dot products, regarding P; and P». If both dot productsare
calculated there isno possibility of mistake. Thisapproach isused in the curvature testing between two curved
surfaces which is presented afterwards.



Figure 3: Incorrect application of the curvature testing.

3.2. Curvature Testing between two Curved Surfaces

Consider A; and A, astwo curved surfaces. Inthissituationit isnecessary to calcul ate two dot productsat the
points P; and P, which belong to the surfaces A; and A, respectively. The visibility situations corresponding
tothissituation are sketched in Figure4. If both dot productsare positivethe pointsare mutually visible (Figure
4a). If one dot product is negative the angle « is greater than 90° and the points are not visible to each other
(Figure 4b). The same conclusion isvalid in the case of the two dot products being negative (Figure 4c).

The calculation of the two dot products has the aim of avoiding theincorrect determination of the visibility
between two points, which can happen if only one observation directionistaken. For instance, in the situation
described in Figure 4b, if only the dot product concerning the angle «; were calculated the point P, would be
considered visible from the point Py, which would undoubtedly be incorrect.

Figure 4: Visihility situations between two curved surfaces.

3.3. Curvature Testing on Concave Surfaces

The algorithms described in this paper can be applied to convex or concave surfaces. Figure5 illustrates the
curvature testing applied to a concave and a plane surface. The curvature testing can also be applied to two
concave surfaces.

Figure5: Curvaturetesting on a concave surface: @) i . €21 < 0b) 7l . €21 > 0.

However, in the case of the concave surfaces, testing for self intersection may be also necessary. If the
dot product is negative the point P, is not visible from P; (Figure 5a). On the other hand, if the dot product is



positive testing for self intersection is necessary to decide about the visibility of P, from P;. For instance, as
in Figure5b, the dot product at P, is positive but P, cannot be seen from Py, because the same surface which
P> ison, obscuresit.

In addition, a concave surface can see itsalf (#3; # 0)[6]. Consequently the solution for the series of
equations that provides the radiosities of the environment will require the use of a pivot strategy [3-4] before
the use of a standard equation solver.

4. Verification of the Accuracy of the Form Factors

The first images synthesised through the application of the radiosity method [6] have used an environment
formed by the faces of acube asatest model. The test model used in this paper adds a sphere to the model used
by Goral et al. [6], since the development of PDM is particul arly associated to the image synthesis of curved
objects[7].

This simple test model, shown in Figure 6, was chosen because it supports, completely, the goals of this
paper. It iscomposed of acurved object interacting, through thelight interrefl ections, with the walls or faces of
a surrounding cube. The sphereis an obstacle which allows the application of the occlusion testing technique
described earlier.

®

Face 2 isfrontal.

r = sphereradius.
I = length of the faces of the cube.
d = distance betweenthe sphere and the faces.

Figure 6: Sketch of the test model.

Additionally, the analytical form factors between the sphere and the walls, used in the determination of the
relative errors corresponding to the form factors cal culated by the PDM, are given by the form factor definition
itself. Through the c summation relationship of theform factors[6], it isknown that the summation of theform
factors of a surface regarding the other surfaces that compose the closed environment is equal to 1. Therefore,



the form factor between the sphere and each face of the cube, F;_;, corresponds to 1/6, since the cube has six
faces and the form factor of the sphere related to itself is zero.

F'o_ fanatytical) = % =1.6666x 10°* to f=1,23,456 (17)

Therelative errors of the numerical form factors are cal culated using the foll owing expression presented by
Maxwell et al. [8]:

lytical value — jcal val
Relative Error(%) = lanalytical value — numerical value| « 100 (18)

analytical value

The parametric equations of the sphere used in this paper correspond to the geometry described in Figure 7a
and are expressed as:

z(¢,0) =r sing cosd
9:(¢,0) = | y(¢,0)=r sing sing (19)
z(¢,0) =r cos¢
The normal to the sphere surface can be obtained through the following cross product:
. Og.(¢,0)  0ge(9,0)
fle = 9 X 50 (20)
Using the equations presented in (19) and (20), the normal to the sphereis given by:
i, = (r?sin® ¢ cosf, r*sin® $ Sinf, > cosé sing) (21)

b)

(-ab) z (@b)

t4

(-a-b) S (a-b)

Figure 7: Geometries used in the parametric descriptions of: a) the sphere b) aplane patch.

The parametric equations used to describe the plane patches in this paper correspond to the geometry
presented in Figure 7b and are expressed as:

z(t,s) = a(2s — 1)
gp(t,s) = y(t,s) =d
z(t,s) = b(2t — 1)

(22)

where a and b are the coordinates of the vertices of a plane patch.



The normal to the plane patches can also be obtained through the cross product of the partial derivates of
gp(t,9):

s Jgp(t, s) o 0ygp(t, s)

P ot O0s (23)
Thus, to a plane patch with ageometry described in Figure 7b, the normal vector is given by:
ii, = (0,1%,0) (24)

4.1 Form Factor s between the Sphere and the Faces

The values assigned to the parameters r, d and | were 1, 3 and 6 respectively. The closed environment was
divided into 86 patches, 32 for the sphere and 9 patches for each face. The form factors between the patches of
the sphere and the patches of the faces were calculated. Then, the form factors between the sphere and each
face were aso calculated to determine the relative errors. The expression for these form factors was obtained
from the expression used in the substructuring technique [9] and is given by:

1 Npf MNps

Fooj = S Ppacps Aps (25)
$ pf=1lps=1

where:

Fo_y = form factor between the sphere and a face.

Fyps—py = formfactor between apatch of the sphere and a patch of aface.

A, = areaof the sphere.

Aps = areaof the patches of the sphere.
Npf = number of patches of the face.
Tips = number of patches of the sphere.

The vaues of the relative errors will be lower if the sphere and the faces are divided into a finer grid of
patches. Inorder to demonstrate thisassumption, the environment was al so divided into 280 patches, 64 for the
sphere and 36 for each face. The form factors obtained, using the five Gaussian points, are listed in Table 1.

Table 1: Form factors between the sphere and the faces.

Face 86 patches 280 patches
Fs—j(numericary REl@IVEError(%) F,_jumericany  Relative Error(%)
I 1.6735x 1071 0.41 1.6683 x 101 0.10
2 1.6693 x 101 0.16 1.6673 x 1071 0.04
3 1.6693 x 101 0.16 1.6673 x 1071 0.04
4 1.6693 x 101 0.16 1.6673 x 101 0.04
5 1.6693 x 101 0.16 1.6673 x 101 0.04
6 1.6735x 101 0.41 1.6683 x 101 0.10

Even though thereisasmall variation concerning theform factors of thefaces 1 and 6 dueto the characteris-
tics of the parametric equations used in the description of the surfaces, the presented accuracy isexcellent. The
calculation was performed on a SUN Sparc station 1+. The processing times corresponding to each subdivision
of the environment are listed in Table 2.



Table 2: Processing times of the form factors between the sphere and the faces.

No. of Patches Processing Time
86 36sec
280 S5min

4.2 Form Factor s between the Faces

A problem of indetermination appears when two sample points, which belong to two different patches, are
placed amost at the same point on the edge shared by these patches. The distance L between the sample
points may be too small due to the Gaussian distribution of the sample points. Then, the numerator and the
denominator of the function f(s,t,¢,0) will have values close to zero. In order to solve this problem the rules
of L'Hopita [10] must be applied to the numerator and to the denominator of the function f(t,s,¢,0). A new
functionf’ (t,s,¢,0) isobtained. Thisfunction should be used during the eval uation of the summation terms (16)
regarding the pairs of sample pointswith a geometry described earlier.

The form factors between the patches of the faces were calculated performing the correction described
above. In order to verify the consistency and the accuracy of the obtained values the form factors between the
faces were determined using the foll owing equation, which al so comes from the expression presented by Cohen
etal. [9]:

Npb MNpa

Ffa—fb = jjléf: Z Z Fpa—pb (26)

pb=1pa=1

where:

Fta_yp = formfactor between the face a and the face b.

Fra—pb form factor between a patch of the face a and a patch of the face b.
a area of theface a.

Apa = area of apatch of theface a.

number of patches of the face a.

= number of patches of theface b.

Aswas performed in the previous section, the form factors of the faces were cal culated twice, considering
the closed environment divided into 86 patches and 280 patches. The form factors obtained, using five Gauss
pointsin the numerical evaluation of integrals, are presented in Table 3. They are consistent with the geometry
of the environment (Figure 7). As expected, the pairs of faces with the same geometric positions, paralel or
perpendicul ar, have the same form factor values.

The summation relationship of the form factors can be used to evaluate the accuracy of the form factors
obtained. As was mentioned earlier the form factors for each surface of a closed environment must sum to
unity. Face 1 was chosen as an example. Itsform factors regarding the sphere were obtained from the values
presented in section 4.1 and using the reciprocity relationship of the form factors [6]. The form factors between
face 1 and the other faces are presented in Table 3.

The values of the summations of the form factors of face 1 concerning the other surfaces, considering the
environment divided into 86 and 280 patches, are presented in Table 4. These values present avery satisfactory
degree of accuracy, even though futureresearch still needsto be doneto improve the technique used to solvethe
problem of indetermination mentioned earlier. A radiosity program which implements the hemi-cube method
[13] has not yet been written to compare the two a gorithms, however, let usjust recall that Baum et al. [11]
mention relative errors of 2.5% for the form factors obtained through the hemi-cube method.

The increase in the number of patches improved the accuracy as well as increased the processing time
required. The evauation of the form factors between the faces was also performed on a SUN Sparc station 1+.
The processing times, considering both subdivisionsof the environment, are listed in Table 5.



Table 3: Form factors between the faces.

face, — face,

Ffa—fb(numerz’cal)

86 patches 280 patches
1-2 2.0341x 10~t 2.0018 x 107!
1-3 2.0341x 10~* 2.0018 x 107!
1-4 2.0341x 10~* 2.0018 x 107!
1-5 2.0341x 10~* 2.0018 x 107!
1-6 1.5400 x 10! 1.5400 x 10~
2-3 1.5400 x 10! 1.5400 x 10~
2-4 2.0341x 10~* 2.0018 x 107!
2-5 2.0341x 10~* 2.0018 x 107!
2-6 2.0341x 10~* 2.0018 x 107!
34 2.0341x 10~* 2.0018 x 107!
3-5 2.0341x 10°! 20018 x 1071
3-6 2.0341x 10°! 20018 x 1071
4-5 1.5400 x 10~ 15400 x 101!
4-6 2.0341x 10~* 2.0018 x 10!
5-6 2.0341x 10~* 2.0018 x 10!

Table 4: Summeations of the form factors between face 1 and the other surfaces.

No. of Patches Summation Relative Error(%)
86 1.0258 2.58
280 1.0128 1.28

Table 5: Processing times of the form factors between the faces.

No. of Patches Processing Time
86 1min 22sec
280 21min 18sec

5. Conclusion

The PDM isan effective method for the cal cul ation of form factorsbetween plane and/or curved surfaces, whose
main focus of attentionisthenumerical accuracy of theresults. Thefact that PDM does not use approximations
by polygons represents an advantage over other methods of form factor calculation.

The form factors obtained from the use of this method present a high degree of accuracy. If the surfaces
are divided into afiner grid of patches there is an increase of the accuracy. Certainly thisincrease in accuracy
is followed by an increase in the processing time, which can be reduced through the application of parallelism
on the calculations. Besides, with respect to curved surfaces, alarger number of polygonsis necessary, instead
of curved patches, to represent them without a significant decrease of realism. Since the number of operations
executed during the calculation of form factors depends on the discretization of the surfaces, curved patches as
as used by PDM, instead of polygons, alows a reduction of the processing time.

Beyondtheaccuracy of theformfactors PDM benefitsthe use of the exact descriptionsof the surfaces during
the rendering, i.e. the curved surfaces are not divided in polygons. This avoids the polygonized silhouettes
of the curved surfaces common in radiosity pictures. As we can see in Figure 8 the curved object does not



present a contour formed by edges of polygons. Thisimage was generated considering the diffuse environment
sketched in Figure 6 divided in 280 patches and 144 subpatches corresponding to shadow area. It was rendered
using avisible-surface ray casting agorithm[12] and no anti-aliasing technique was applied.

Despite the simple geometries used in the tests, we believe the PDM represents a step forward towards the
search of accuracy in the physically-based rendering. Future efforts will include the study of applications of
PDM on the calculation of specular form factors and its use in conjunction with other methods, for example the
ray-tracing technique presented by Wallace et al. [5], in order to generate complex images using a progressive
refinement strategy. In addition, parallelism will be applied to the cal cul ation of the form factors to reduce the
processing time.
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