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Abstract— The hyperspectral reflectance and transmittance
of flowing blood samples are employed in a wide range of
biomedical applied research initiatives such as the detection
and monitoring of hematological abnormalities. The success of
these initiatives is tied to the correct interpretation of these
radiometric quantities. This, in turn, requires a comprehensive
understanding about their sensitivity to variations in the exper-
imental conditions in which they have been obtained. In this
paper, we aim to contribute to these efforts by systematically
examining the effects of sample thickness variations on these
quantities. More specifically, we employed controlled in silico
experiments to assess these effects on samples with different
biophysical characteristics, notably their hematocrit, hemolysis
level and orientation of their constituent cells with respect to
the flow direction. To ensure a high degree of fidelity in our
experiments, we used a first-principles simulation framework
supported by measured data. Our findings unveil distinct
spectrally-dependent trends associated with reflectance and
transmittance changes elicited by sample thickness variations.

Index Terms— blood, flow, thickness, hemolysis, reflectance,
transmittance, predictive simulations, in silico experiments.

I. INTRODUCTION

The interactions of light with human blood result in
radiometric responses that can be measured in terms of
reflectance and transmittance. The correct interpretation of
these responses, in turn, can provide valuable information
about the composition and physiological parameters (e.g.,
oxygenation and pH) of blood samples [1], [2], [3], [4].

Accordingly, considerable research efforts have been di-
rected toward the understanding of blood optical properties,
particularly under different rheological states [5], [6], [7] and
hemolysis levels [8], [9]. While the former are associated
with blood flow characteristics (e.g., slow, moderate or fast)
[5], [10], the latter are quantified in terms of the fraction
of the red blood cells (RBCs) whose membrane rupture
releases intracellular contents, notably hemoglobin, into the
surrounding plasma [11], [12].

These studies are usually carried out in conjunction with
radiometric measurements performed under in vitro condi-
tions by placing blood samples in glass cuvettes. To prevent
the introduction of undue biases in the interpretation of the
resulting measured datasets, it is essential to be aware of
their sensitivity to variations in the experimental conditions
such as the light incidence geometry (e.g., parallel or per-
pendicular to the blood flow) and the samples’ thickness.
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To date, detailed information about the impact of sample’s
thickness variations on its radiometric responses is still
scarce in the literature [13], [14]. Reports in this area are
either based on the examination of blood data obtained
through inversion procedures or overlook concomitant vari-
ations in samples’ key characterization parameters such as
their hemolysis level. It is worth noting that hemolysis is
considered one of the most common causes of errors in the
analysis of blood samples [15], and it has costly implications
in medical practice as samples may need to be retaken [16].

In this paper, we aim to mitigate this knowledge gap by
methodically assessing the impact of sample thickness vari-
ations on the hyperspectral radiometric responses of flowing
blood subject to distinct hemolysis levels. We employ a
in silico (computational [17]) investigation approach based
on the use of a first-principles cell-based model of light
interactions with human blood, known as CLBlood [10],
[18], and supported by measured datasets [6]. These are
employed as baseline references for our in silico experiments,
which are perfomed in ultraviolet, visible and near-infrared
domains (from 250 to 1000 nm).

The CLBlood model provides a hyperspectral simulation
framework whose predictive capabilities have been exten-
sively evaluated both qualitatively and quantitatively [18],
[10], and used in a number of biomedical optics investi-
gations involving blood optical properties (e.g., [12], [19],
[20], [21]). Within its algorithmic formulation, interactions
of light (represented by discrete rays, each one traveling at a
given wavelength λ) with plasma and RBCs are simulated as
random walk processes. More specifically, as light traverses
a blood sample, RBCs are generated probabilistically on the
fly. Their generation is dependent on the distribution of their
orientation and the percentage of the sample volume that
they occupy, the sample’s hematocrit (HCT). Light atten-
uation events (absorption and scattering) are stochastically
accounted for using data driven procedures and wave optics
resources when appropriate [10].

In samples with relatively high HCT, it has been noted that
the orientation of the RBCs is predominantly random, rolling
and aligned with the flow direction, at low, intermediate
and high shear rates, respectively [22], [5]. Conversely, the
alignment of RBCs with the flow becomes less pronounced
for relatively low HCT. These aspects are also taken into
account in our investigation since the CLBlood model has
the capability of emulating different flow shear rates using
an aggregate distribution of cell orientations (random, rolling
and aligned) [10], [18], where the weight (%) of each
distribution is a parameter for the model.
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II. IN SILICO EXPERIMENTAL FRAMEWORK

In this investigation, we considered two blood samples
with distinct HCTs. The characterization parameter values
(presented in Table I) for these samples, henceforth referred
to as LH (lower HCT) and HH (higher HCT), were chosen
based on the description of the actual samples employed
in the laboratory experiments [6], [18] that provide the
baseline references for our simulations. In those experiments
[6], measured reflectance datasets were obtained by placing
fully oxygenated blood samples (under steady flow and high
shear rate conditions) inside a glass cuvette. Those measured
datasets are used here as a fidelity standard for our modeled
(baseline) reflectance datasets.

TABLE I: Parameters employed in characterization of the
selected blood samples LH and HH.

Parameter Value (LH) Value (HH)

HCT (%) 8.4 33
Rolling RBCs (%) 90 40
Aligned RBCs (%) 10 60
Mean cell hemoglobin content (g/L) 330 330

Our in silico experiments consisted in the computation of
modeled directional-hemispherical reflectance and transmit-
tance curves for the selected samples using the CLBlood
model. For consistency, we adopted a spectral resolution of
5 nm in all modeled curves presented in this work, which
were obtained using a virtual spectrophotometer [23] casting
106 sample rays per λ. Moreover, we strived to reproduce
the measurement conditions adopted in the aforementioned
laboratory experiments [6] as faithfully as possible. These
include an angle of incidence of 8◦, incident light parallel to
the flow, and a cuvette made of fused silica [18].

For the baseline reflectance computations, we considered
a sample thickness (t) equal to 116 µm and a fraction of
hemolyzed RBCs (h) equal to 2%. These figures correspond
to those employed in the actual laboratory experiments [6].
As it can be observed in Fig. 1, the parameter values (Table I)
chosen to characterize the selected samples (according to
their described biophysical and rheological traits [6], [18])
resulted in a close agreement between the measured and
modeled reflectance curves. This, in turn, indicated an appro-
priate degree of reliability associated with the chosen sample
characterization datasets.

In order to assess the impact of thickness variations on the
samples’ hyperspectral radiometric responses, we computed
their reflectance and transmittance curves considering a 50%
and 100% increase in their thickness, which correspond to
t equal to 174 and 232 µm, respectively. Furthermore, to
expand our scope of observations, we have also considered
higher hemolysis fractions (h equal to 50% and 100%), and
repeated the experiments accordingly.

Lastly, to enable the reproducibility of our in silico exper-
imental results, we have made CLBlood available for online
use [18], [24] through our model distribution system [25]. We
have also provided access to supporting biophysical datasets
(e.g., refractive index and extinction coefficient curves) [26]
employed in our investigation.
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Fig. 1: Comparison of measured and modeled (baseline)
reflectance curves obtained for the selected blood samples.

III. RESULTS AND DISCUSSION

The outcomes of our in silico experiments have revealed
distinct qualitative and quantitative trends in the regions
between 250 and 600 nm, and between 600 and 1000 nm.
It has been noted that blood hyperspectral radiometric re-
sponses tend to be more affected by light absorption events
in the former, and by light scattering events in the latter [10],
[6]. For conciseness, we will refer to these regions as A and
S, respectively, in the remainder of this paper.

In Fig. 2, we present the modeled reflectance curves
obtained for the LH sample. As it can be observed in
Fig. 2(a), the increases in the sample’s thickness under a
low hemolysis level resulted in decreases in its reflectance
in region A, and increases in region S. As depicted in the
graphs presented in Fig. 2(b) and (c), similar thickness-
driven reflectance decreases in region A are observed when
the sample’s hemolysis fraction is increased. However, the
thickness-driven reflectance increases in region S become
less noticeable following an increase in the hemolysis level.

In Fig. 3, we present the modeled transmittance curves
obtained for the LH sample. In contrast with the observations
regarding its reflectance changes, the increases in its thick-
ness under a low hemolysis level resulted in transmittance
decreases in both spectral regions. However, the magnitude
of the thickness-driven transmittance decreases in region S
becomes practically negligible as the sample’s hemolysis
fraction is increased (Fig. 3(b) and (c)).

In Fig. 4, we present the modeled reflectance curves
obtained for the HH sample. As it can be observed in
Fig 4(a), the increases in the sample’s thickness lead to
decreases in its reflectance in region A, around 500 nm,
and increases in region S. Like it was observed for the
LH sample, similar thickness-driven reflectance decreases
in region A are observed when the sample’s hemolysis
fraction is increased (Figs. 4(b) and (c)), while the thickness-
driven reflectance increases in region S become markedly
less pronounced.
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Fig. 2: Reflectance curves obtained for the LH sample considering distinct thicknesses (t) and hemolysis fractions (h).
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Fig. 3: Transmittance curves obtained for the LH sample considering distinct thicknesses (t) and hemolysis fractions (h).

300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

wavelength (nm)

re
fl
e
c
ta

n
c
e
 (

%
)

 

 

t = 116 µm

t = 174 µm

t = 232 µm

(a) h = 2%.

300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

wavelength (nm)

re
fl
e
c
ta

n
c
e
 (

%
)

 

 

t = 116 µm

t = 174 µm

t = 232 µm

(b) h = 50%.

300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

wavelength (nm)
re

fl
e
c
ta

n
c
e
 (

%
)

 

 

t = 116 µm

t = 174 µm

t = 232 µm

(c) h = 100%.

Fig. 4: Reflectance curves computed for the HH sample considering distinct thicknesses (t) and hemolysis fractions (h).
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Fig. 5: Transmittance curves computed for the HH sample considering distinct thicknesses (t) and hemolysis fractions (h).

Finally, in Fig. 5, we present the modeled transmittance
curves obtained for the HH sample. Again, like it was
observed for sample LH, the increases in the HH sample’s
thickness under a low hemolysis level resulted in transmit-
tance decreases in both regions. Also, the magnitude of
the thickness-driven transmittance decreases in the region
S becomes practically negligible as the sample’s hemolysis
fraction is increased (Fig. 5(b) and (c)).

In short, our in silico experimental results indicate that
the impact of sample thickness variations on blood samples’
hyperspectral radiometric responses in region A tends to be
quantitatively dependent of their HCT and independent of
their hemolysis fraction. However, in region S, it tends to
be quantitatively dependent on both their HCT and hemolysis
fraction. Moreover, in this region, the trends are qualitatively

reverse for reflectance and transmittance curves, with the
former being increased following a thickness increase, and
the latter being reduced.

It is important to highlight the fact that the observations
reported above were made with respect to the selected
samples under the described flow conditions. Taking that
into account, we can then elaborate on the light attenuation
mechanisms behind the observed changes in the samples’
hyperspectral radiometric responses.

As a starting point, one can assume that an increase in the
sample’s thickness raises the probability of light attenuation
events (absorption and scattering) to take place. In region
A, more absorption events lead to absorptance increases
followed by reflectance and transmittance reductions. On the
other hand, in region S, more scattering events, particularly
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backwardly oriented, lead to reflectance increases and trans-
mittance reductions.

Regarding the implications of an increase in the samples’
hemolysis level, it has been noted that it reduces the oc-
currence of light detour effects [10], [12]. These effects are
associated with an increase in the light optical path length
in a whole blood sample in comparison with a hemoglobin
solution [27]. The reduced occurrence of detour effects, in
turn, leads to a decrease in the probability of absorption and
scattering events directly elicited by the presence of RBCs.
These ramifications of the detour effects are often more
noticeable in spectral regions characterized by a relatively
low absorptance [10], [12], like region S .

Our findings suggest that, when it comes to the probability
of scattering events within region S, the impact of an increase
in the samples’ thickness may be progressively counterbal-
anced by the impact of a reduction in the detour effects
associated with higher hemolysis levels. As a consequence,
the reflectance and transmittance curves within this region
tend to converge to low and high plateau curves, respectively.
The low plateau curve is likely to be associated with a
decrease in backward scattering, and the high plateau curve
with a decrease in absorption, which is also connected to the
reduction in the detour effects.

IV. CONCLUDING REMARKS

In this paper, we have examined the impact of thickness
variations on the reflectance and transmittance of flowing
blood samples with distinct HCTs and subject to different
hemolysis levels. Our in silico findings, albeit still subject
to in vitro verification, indicate that such an impact may be
significant. Furthermore, they also suggest that the effects
of thickness variations on reflectances responses may differ
considerably from those on the samples’ transmittances,
particularly in spectral regions in which light attenuation
is dominated by scattering events. Accordingly, we believe
these changes should be carefully accounted for in the
study and interpretation of blood samples’ hyperspectral
radiometric responses, especially when these are employed
in protocols for the detection and monitoring of medical
conditions associated with blood disorders.
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