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ABSTRACT

The convergence of iterative methods used to solve the linear equations arising from radiosity
systems depends on the distribution of the eigenvalues of the radiosity coefficient matrix. In this
paper we prove that all eigenvalues of the radiosity coefficient matrix are real and positive. This
fact may allow us to obtain fast radiosity solutions using the knowledge about the spectrum of
the matrix. Moreover, the physical meaning of the eigenvectors in global illumination applica-
tions is an open problem in graphics. In order to contribute to the clarification of this question,
we present some experiments based on the theory of matrices, in which we show interesting
features that arise when the eigenvectors are used as solution vectors in graphics settings.
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INTRODUCTION

Determining the radiant exitance (or radiosity)
of each patch in a closed environment involves
solving, either implicitly (through radiosity-
specific methods

�
) or explicitly (through gen-

eral matrix methods like Gauss-Seidel [Cohen-
Greenberg85]) the linear system

����� �
, in

which
�

represents the radiosity coefficient ma-
trix,

�
represents the vector of unknowns and

�
represents the vector of emittances. Because of
the large size of these linear systems and the rel-
atively low accuracies required in the solutions�
, iterative methods are commonly used.

Why is it relevant to search for faster iterative
methods to solve the radiosity system of equa-
tions when the most expensive stage of the ra-
diosity pipeline is the calculation of form fac-
�
We use the expression radiosity-specific methods to

group methods specifically developed to solve the radios-
ity problem, although those methods can be considered
variations of numerical methods such as Southwell Itera-
tion [Goertler et al. 94] or SOR [Hageman-Young81].

tors? The reason is that there are many practi-
cal applications in which a radiosity system has
to be solved repeatedly, due to changes either
to the vector of reflectances or to the vector of
emittances, while the form factors remain un-
changed. An example of such an application
would be the simulation of the incidence of sun
light over a building during a day. In this case
the form factors would have to be computed only
once, while the system would have to be solved
720 times to account for solar positions at every
minute.

The convergence properties of iterative methods
rely extensively on the spectrum or set of eigen-
values of the coefficient matrix

�
. An eigen-

vector 	 of a matrix
�

is a nonzero vector that
does not rotate when

�
is applied to it. In other

words, there is some scalar constant 
 , an eigen-
value of

�
, such that

� 	 � 
�	 . Every square
matrix

�
of order � has � possibly nondistinct

complex eigenvalues 
 �� 
 ��������� 
�� . When
�

is
symmetric the eigenvalues are real-valued. The



set ��� ��� of eigenvalues of a matrix is called its
spectrum.

It has already been shown [Baranoski et al. 95a]
[Neumann94] that we can obtain relatively in-
expensive estimates of the eigenvalues of

�
us-

ing the Gerschgorin Circle Theorem [Burden-
Faires93]. Moreover, it has also been shown
[Baranoski et al. 95a] that high reflectivities
cause a larger number of interreflections, caus-
ing the eigenvalues to become more spread out,
which in turn slows down the convergence of
the iterative methods. However, it has not yet
been shown analytically that all the eigenvalues
of the radiosity coefficient matrix

�
are real and

positive, which we intend to do in next section.
In theory one could apply any iterative method
to solve a radiosity system of equations. How-
ever, this proof guarantees that fast methods, like
Chebyshev [Baranoski et al. 95b] and Conjugate
Gradient [Neumann94, Shewchuck94] among
others, can be applied with confidence of their
convergence.

Furthermore, Arvo [Arvo95a, Arvo95b] has
shown that several fundamental operators that
arise in global illumination can be uniformly ap-
proximated by matrices. Then, if one can deter-
mine what the eigenvectors of a global illumina-
tion matrix, like the radiosity matrix

�
, repre-

sent in terms of the physical application, it may
be possible to obtain accurate approximations
of them. These eigenvectors in turn could be
used to obtain low rank approximations of those
matrices using SVD type approaches [Golub-
Loan89].

The problem is that the physical meaning of
the eigenvectors and eigenvalues is unknown in
global illumination to date. In other fields, on
the other hand, researchers know their meaning,
and use them not only in analysis of problems,
but also in practical applications. For instance,
as mentioned by Schewchuk [Shewchuck94],
the eigenvectors of the stiffness matrix associ-
ated with a discretized structure of uniform den-
sity represent the natural modes of vibration of
the structure being studied, and the correspond-
ing eigenvalues define the natural frequencies of
vibration [Lancaster-Tismenetsky85].

Since for physically meaningful problems the
inverse of the matrix

�
has all positive en-

tries, the Perron-Frobenius theorem [Black-
well61, Lancaster-Tismenetsky85] implies that
all components of the eigenvector correspond-
ing to the smallest eigenvalue of

�
are strictly

of the same sign. Thus this eigenvector can be
scaled and interpreted as a vector of radiosities.
We explore some of the implications of this fact,
and show interesting features of using eigenvec-
tors as solution vectors in graphics settings in
order to determine their physical meaning in the
radiosity context.

EIGENVALUES OF THE RADIOSITY
COEFFICIENT MATRIX

The transpose of an ����� matrix
� � � ����� �

is the matrix
�! "�#� �$�%� � . A square matrix

�
is said to be symmetric if

�&�'�( 
. Initially, to

prove that all eigenvalues of the radiosity matrix�
are real and positive, consider that it can be

made symmetric by scaling its rows:��)*�,+-�
(1)

where
+

is the diagonal matrix in which the di-
agonal entry .�/0/ is the quotient of the area and
the reflectivity of patch � .
Since

+-�
is symmetric, its eigenvalues are real-

valued. Moreover, by applying the Gerschgorin
Circle Theorem [Burden-Faires93], one can ver-
ify that they are also positive. Hence

+-�
is a

positive definite matrix [Burden-Faires93]. The
definition of positive definite means that1�2 +3� 15476 (2)

for all 198;: , where : is the complex plane and1 2 is the Hermitian transpose of the vector 1 .

Let 1 be an eigenvector of
�

and 
 be an eigen-
value. Then� 1 � 
 1  (3)

where 
 and 1=<� 6 are possibly complex.

Then:+-� 1 � 
 + 1 (4)

and1 2 +3� 1 � 
 1 2 + 1 (5)



The left side of Equation (5) is neces-
sarily real and positive from Equation (2).
Furthermore, the definition of an eigenvec-
tor 1 implies that it is nonzero, hence

1 2 + 1 � > 1 / 1 /?.@/BA�.�CD/0� > 1 / 1 / �
.�CD/0� 1 2 1 � .@CE/F�HG 1 G 4I6 (6)

Equations (5) and (6) imply that 
 is real and

 4J6 . Therefore all of the eigenvalues of

�
are

real and positive.

Although it may seem that this proof applies di-
rectly to the continuous radiosity operator, more
details need to be considered. The critical point
is that the diagonal entry � of the matrix

+
is

the ratio of the area and reflectivity of the � -
th patch. For the continuous case, the area is
zero and the above argument cannot be used
directly. However, the continuous operator is
a compact operator [Arvo95b], sometimes also
called a completely continuous operator in func-
tional analysis. Because of this we can construct
a sequence of finite dimensional operators

�LK
that converge uniformly to the continuous oper-
ator

��M
, each with a spectrum consisting only

of positive real eigenvalues. That sequence can
be constructed using a sequence of uniformly
refined discretizations of the scene, for exam-
ple. The limit

�NM
will necessarily have a spec-

trum that is real and nonnegative. Because
�OM

is nonsingular [Kajiya85], it cannot have zero
as an eigenvalue. Its compactness also implies
that it has only a point spectrum, which implies
that

��M
has only positive real eigenvalues in its

spectrum.

IMPLICATIONS OF THE
PERRON-FROBENIUS THEOREM

Any matrix that can be expressed in the form:P �RQ�S�TVU  Q 4J6  U A 6 (7)

for which
Q AXW�� UO� , the spectral radius

�
of
U

,
is called an M-matrix [Berman-Plemmons87].

Recall that the matrix
�

can be represented by:�X��SNT=Y
(8)Z

The spectral radius [@\�]_^ of a matrix ] is defined
by [@\�]_^a`�bacedgfihjf , where h is an eigenvalue of ]
[Burden-Faires93].

where F is the scaled form factor matrix. When
a scene has no concave patches, the diagonal
entries of the matrix

�
are ones and the off-

diagonal entries are the negatives of products of
the form factors and the corresponding reflec-
tivities. When reflectivities are less than 1.0 in
value, the summation of those products in any
row is necessarily less than one. This implies
that the spectral radius of

Y
is less than one.

Therefore
�

is an M-matrix.

Since
�

is a nonsingular M-matrix and
W�� Y��lkRm (which can be proved by applying the
Gerschgorin Circle Theorem [Burden-Faires93]
to

Y
), the matrix version of the Neumann

lemma [Berman-Plemmons87] for convergent
series gives:

�On � � � SNTVY��on � �
M
>Kop�q Y

K �
Sar�Y7rsY � r�Y!tErvuwuwu

(9)

This implies that the inverse
� n �

of
�

is thus
a positive matrix, having all positive compo-
nents. In other words,

� n �
is a nonnegative

matrix. Furthermore, since
�

is irreducible
[Blackwell61, Berman-Plemmons87, Lancaster-
Tismenetsky85] (because the visibility of patch
� from patch � implies the reverse),

� n �
is also

irreducible.

The Perron-Frobenius theorem, which concerns
square irreducible nonnegative matrices, implies
that the largest eigenvalue xeyBz|{ of

� n �
is real

and positive (as we have already established),
and the corresponding eigenvector 	 of

� n �
has

all components strictly of the same sign [Black-
well61, Lancaster-Tismenetsky85]. Moreover,
if we multiply the relationship:� n � 	 � x�yBz|{e	 (10)

through by
�

we get 	 � x}yBz|{ � 	 , or� 	 � 
�y�~���	 (11)

where 
�y�~�� ��mw� x�yBz|{ . Hence the eigenvector of�
corresponding to its smallest eigenvalue can

be scaled in such way that all its components are
positive, and so can be physically interpreted as
a radiosity vector. In the next section we show
some images obtained this way, and try to give a



physical interpretation to them.

The Perron-Frobenius theorem has further im-
plications. Let 1V4R6 mean the vector 1 is non-
negative and at least one component is positive.
Then the largest eigenvalue of

� n �
is equal to

the maximum over all 1R4'6 , of the minimum
over all positive components 1 / , of �0�����?�������� . Here
� � n � 1 � / means the i-th component of the vector� n ��� 1 . The minimum and maximum can be
reversed in order.

�
is a monotone operator, that is,

� 1 A 6 im-
plies 1 A 6 . This means if the right hand side
vector of the linear system is nonnegative, then
the solution must be nonnegative. Of course this
also follows directly from the physical applica-
tion! Using the above, it may be possible to pro-
vide an upper bound on the smallest eigenvalue
of
�

, thereby analytically proving the spreading
of eigenvalues as the average reflectance of the
environment increases.

EXPERIMENTS WITH EIGENVECTORS

Experiments Set-Up

The test model used in our experiments is shown
in Figure 1a, and consists of a sphere centered
in a cube (r=1.0, d=3.0, h=6.0). The sphere is
divided into 128 patches and each of the faces
of the surrounding cube are divided into 144
patches summing up a total of 992 patches. In
our experiments we use a classical radiosity ap-
proach [Glassner95] in which all surfaces are as-
sumed to be perfect diffuse reflectors.

We use two different sets of parameters to al-
low a wider range of observations. In set 1 we
use one light source corresponding to 16
patches, with an emittance equal to 10.0.
In set 2 we use two light sources, each corre-
sponding to 16 patches and with emittance
equal to 5.0. The reflectivities of the light
sources are set to 0.1, and the reflectivities
of the other surfaces are presented in Figure
1b. The form factors are computed using
the PDM method described in [Baranoski92].
The eigenvalues and eigenvectors are com-
puted using MATLAB [MathWorks94] through

r

d

h4 5

2

surface      set 1      set 2

face 1        0.90       0.90

face 2        0.75       0.75

face 3        0.75       0.75

face 4        0.85       0.85

face 5        0.85       0.85

face 6        0.65       0.65

sphere      0.65       0.55

a)                                                        b)

1

6

Figure 1: a) Sketch of the test model. b)
Sets of reflectivities used in the experi-
ments.

a)                                                                 b)

Figure 2: Images corresponding to the so-
lution (radiosity) vectors of the linear sys-
tems regarding: a) set 1 and b) set 2.

the QR method [Burden-Faires93] whose algo-
rithms are provided by the EISPACK routines
[Smith et al. 76].

The images presented in this paper are rendered
using flat shading and greyscale to allow a bet-
ter detection of the features associated with the
eigenvector components. Figure 2 shows the
images corresponding to the solution (radios-
ity) vectors of the radiosity systems of linear
equations regarding the two sets of parameters,
which are solved using the Chebyshev method
[Baranoski et al. 95a]. These images are used in
our experiments as reference images to be com-
pared with images obtained using eigenvectors
as solution vectors.

Eigenvectors Corresponding to the Smallest
Eigenvalue of the Radiosity Matrices

Figure 3 shows the eigenvectors 	@� correspond-
ing to the smallest eigenvalues of the radiosity
matrices

�
for two different choices of config-
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Figure 3: Eigenvectors 	�� of the matrices�
associated with: a) set 1 and b) set 2.

uration and/or parameters. As expected from
the Perron-Frobenius theorem, their components
have all the same sign. We can notice seven
distinguished groups of points which are asso-
ciated, from left to right, with the sphere and the
six faces. The eigenvector components corre-
sponding to the patches with lowest reflectivi-
ties, which in our experiments correspond to the
emitter patches, are represented by the points
with lowest absolute values.

After taking the absolute values and normaliz-
ing these eigenvectors (by dividing all their com-
ponents by the absolute value of their largest
component), we use them as solution vectors to
display the images of the scenes (Figure 4, top
row). The features presented in these images
seem to be associated with the distribution of
the reflectivities in the scenes (Figure 4, bottom
row). In Figure 4a we can notice that the top of
the sphere, which is closer to an area with low
reflectivity, is darker than its bottom. In Fig-
ure 4b, areas of the scene that are directly ex-
posed to the luminaires are also darker, possibly
due to the low reflectivities assigned to the emit-
ter patches. These features seem to indicate that

a)                                                                 b)

c)                                                                  d)

Figure 4: Images obtained using as so-
lution vectors the eigenvectors 	�� of the
matrices

�
associated with: a) set 1 and

b) set 2; and images obtained using as so-
lution vectors the vectors of reflectivities
associated with: c) set 1 and d) set 2.

the absolute values of components of the eigen-
vectors 	�� are directly proportional to the reflec-
tivity values of the corresponding patches. Fur-
thermore, they are also associated with the di-
rect interaction of reflectivities. In other words,
patches directly exposed to areas with low re-
flectivity, shown as darker areas in the images,
correspond to components of the eigenvectors
	�� with low absolute values (assuming normal-
ized eigenvectors).

Eigenvectors Corresponding to the Largest
Eigenvalue of the Symmetric Radiosity
Matrices

A SVD (single value decomposition) type ap-
proach [Golub-Loan89] may be used to provide
a low rank approximation for the symmetric ma-
trices

� )
. A low rank approximation of

� )
is

given by:��)� � 
���	w��	��� r 
�� n � 	w� n � 	��� n � r ����� r

�� n � 	w� n � 	 �� n � �i��� �5� � Ts� (12)

where 	���  	��� ������� 	��� correspond to the transposes
of the eigenvectors of

� )
. For a symmetric
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Figure 5: Eigenvectors 	�� of the matrices� )
associated with: a) set 1 and b) set 2.

matrix the SVD is the same as the eigenvalue-
eigenvector decomposition. The principal com-
ponents are then the eigenvectors, correspond-
ing to the largest eigenvalues, 	�� . Because
of this, we decided to extend our investiga-
tion to the eigenvectors 	�� of the matrices

� )
(Figure 5).

After taking the absolute values and normaliz-
ing the eigenvectors 	�� , we use them as solution
vectors to display the images regarding the two
sets of parameters. As one would expect look-
ing at the plots of eigenvectors (Figure 5a and
5b), the images (Figure 6a and 6b) are almost
completely dark, with the exception of the emit-
ter patches. These images were displayed us-
ing a Gamma correction function [Foley et al.
90] provided by XV [Bradley94] in which the
Gamma value,   , is set to 1.0. When we in-
crease this value to   �¡� � � , some interesting
features appeared (Figure 6c and 6d). These fea-
tures seem to be related with the paths of direct
light propagation. They also show that there
is more useful information associated with the
components of the eigenvectors 	�� than the al-
most straight lines in the plots of Figure 5 indi-

a)                                                                 b)

c)                                                                  d)

Figure 6: Images obtained using as solu-
tion vectors the eigenvectors 	�� of the ma-
trices

� )
associated with: a) set 1 (with

  � m � 6 ), b) set 2 (with   � m � 6 ), c)
set 1 (with   � � � � ) and d) set 2 (with
  �R� � � ).

cate. Furthermore, on face 2 (see Figure 1) of
the image presented in Figure 6d there is no sign
of any feature associated with the paths of direct
light propagation, as one would expect since that
surface is also exposed to the luminaires.

Figure 7 presents a zoom in of the components
of the eigenvectors 	�� associated with the non
emitter patches, and reveals the patterns associ-
ated with the features presented in Figures 6c
and 6d. To analyze the physical meaning of
these patterns more closely, we set the compo-
nents of the eigenvectors 	�� associated with the
emitter patches to 1.0, and took the absolute val-
ues and normalized the remaining ones. The re-
sulting images, presented in Figures 8a and 8b,
are very close to the solution images (Figures
2a and 2b). Increasing the value of   from 1.0 to
2.2, which has the effect of increasing the bright-
ness of the scenes, we can notice that the similar-
ities with the solution images become even more
evident.

Where does the association with the paths of
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Figure 7: Zoom in of the components
of the eigenvectors 	�� regarding the non
emitter patches and associated with a) set
1 and b) set 2.

direct light propagation comes from? Looking
at the graphs presented in Figures 5 and 7, we
can notice that the absolute values of the com-
ponents of the eigenvectors 	�� of

� )
are in-

versely proportional to the reflectivity values of
the corresponding patches. Moreover, the com-
ponents with the highest absolute values, hence-
forth called dominants, are associated with the
patches with the lowest reflectivity in the envi-
ronment, which correspond in our experiments
to the emitter patches. The next components
with high absolute values are those whose cor-
responding patches are directly exposed to the
patches associated with the dominant compo-
nents (Figures 6c and 6d).

However, if we assign different reflectivity val-
ues to the emitter patches, such that they no
longer correspond to the dominant components
of the eigenvectors 	�� of

� )
(Figure 9), the asso-

ciation with the paths of direct light propagation
can not be established. This aspect is illustrated
in the images presented in Figure 10 where we
set the reflectivity of the emitter patches to 0.9.

a)                                                                 b)

c)                                                                  d)

Figure 8: Images obtained using as solu-
tion vectors the adjusted versions of the
eigenvectors 	¢� regarding the matrices

� )
associated with: a) set 1 (with   �£m � 6 ),
b) set 2 (with   � m � 6 ), c) set 1 (with
  �R� � � ) and d) set 2 (with   �R� � � ).

In this case, the dominant components will cor-
respond to the sphere patches, since they now
present the lowest reflectivities in both scenes.
Furthermore, the scene in which we assign a
lower reflectivity value for the sphere (Figure
10b) presents a higher brightness than the other
one (Figure 10a).

To further investigate the relationship between
the components of the eigenvectors 	�� and the
reflectivities of the patches, we define vectors ¤ ,
in which the entry ¥e/ corresponds to the diago-
nal entry .�/ of

+
. After normalizing these vec-

tors we use them to display the images regarding
the two sets of parameters. Comparing these im-
ages (Figure 11) with the previous ones (Figure
10), we can notice a similar color gradation on
the spheres, especially the dark spots on the top
and on the bottom. This aspect suggests that the
components of the eigenvectors 	@� of the ma-
trices

� )
are not only associated with the direct

interaction of reflectivities, but they are also as-
sociated with the areas of the patches. This addi-
tional dependency comes from the symmetriza-
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(with the reflectivity of the emitter

patches set to 0.9) associated with: a) set
1 and b) set 2.

tion process which scales the diagonal elements
of
�

by the diagonal entries of
+

.

SUMMARY AND FUTURE WORK

Arvo [Arvo95b] has suggested that functional
analysis might be a useful tool for providing a
better theoretical foundation for global illumi-
nation. This suggestion is followed in this pa-
per in the form of an investigation of the spec-
tral properties of the radiosity matrix. We prove
that all the eigenvalues of this matrix are real
and positive. We believe that this proof, which
is directly related to the spectral analysis of the
equations governing the transport of radiant en-
ergy in global illumination, is essential for the
application of fast iterative solvers to the radios-
ity systems. We also point out that the Perron-
Frobenius theorem may be used to prove ana-
lytically the spreading of the eigenvalues as the
brightness of the scene increases. This issue will
be addressed in the next stage of our research.

In this paper we also show some interesting

a)                                                                 b)

Figure 10: Images obtained using as solu-
tion vectors the eigenvectors 	�� of the ma-
trices

� )
(with the reflectivity of the emit-

ter patches set to 0.9) associated with: a)
set 1 (with   � � � � ) and b) set 2(with
  �R� � � ).

a)                                                                b)

Figure 11: Images obtained using as so-
lution vectors the vectors ¤ associated
with: a) set 1 and b) set 2.

features of using the eigenvectors correspond-
ing to the smallest and the largest eigenvalues
of radiosity matrices and their symmetric ver-
sions as solution vectors in graphics settings.
While these features provide evidence that there
is potentially useful information related to these
eigenvectors, more research is needed to gain a
fuller understanding of their physical meaning.
We intend to proceed with this investigation that,
we believe, may lead us to faster global illumi-
nation solutions.
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